

TECHNOLOGY NEEDS ASSESSMENT TRINIDAD AND TOBAGO

Identification and Prioritization of Technologies for Mitigation

February 2021

TNA Report

Trinidad and Tobago

Identification and Prioritization of Technologies for Mitigation

Feb 2021

Cover photos courtesy:

Ministry of Works and Transport, Point Lisas Industrial Port Development Corporation Limited (PLIPDECO), Ms. Varsha Ramharrack.

List of A	Acronyms
Executiv	ve Summary
1. Intr	oduction
1.1	About the TNA
1.2	Existing national policies on climate change mitigation and development priorities
1.3	Sector selection
1.4 the di	An overview of sectors, projected climate change, and GHG emissions status and trends of fferent sectors
2. Inst	itutional arrangement for the TNA and the stakeholder involvement11
2.1	The National TNA team11
2.2	Stakeholder Engagement Process followed in the TNA – Overall assessment
2.3	Consideration of Gender Aspects in the TNA process
3. Tec	hnology prioritisation for Electrical Power Generation
3.1	GHG emissions and existing technologies of Electrical Power Generation
3.2	Decision context for electrical power generation
3.3	Criteria and process of technology prioritisation for Electrical Power Generation14
3.4	Results of technology prioritisation for Electrical Power Generation
4. Tec	hnology prioritisation for Industry Sector
4.1	GHG emissions and existing technologies of Industry Sector
4.2	Decision context for Industry Sector
4.3	Criteria and process of technology prioritisation for Industry
4.4	Results of technology prioritisation for Industry
5. Tec	hnology Prioritisation for Transport Sector
5.1	GHG emissions and existing technologies of Transport Sector
5.2	Decision context for the Transport Sector
5.3	Criteria and process of technology prioritisation for Transport Sector
5.4	Results of technology prioritisation for the Transport Sector after Multi-Criteria Analysis 22
6. Sur	nmary and Conclusions
6.1	Final list of technologies chosen to move to BAEF
7. List	t of References
8. An	nex I Technology Factsheets for selected technologies
8.1	Electrical Power Generation

	8.2	Industry	. 30
	8.3	Transport	. 34
9.	Ann	ex II List of stakeholders consulted for Mitigation TNA	.37

List of Acronyms

BAU	Business as usual
BAT	Best Available Technology
CEC	Certificate of Environmental Clearance
CRS	Carbon Reduction Strategy
EMA	Environment Management Authority
GCM	General Circulation Models
GDP	Gross domestic product
GEF	Global Environment Facility
GHG	Greenhouse gas
GORTT	Government of the republic of Trinidad and Tobago
ICZM	Integrated coastal zone management
IDB	Inter-American Development Bank
ITCZ	Intertropical Convergence Zone
LECB	Low emission capacity building
MCA	Multi-Criteria Analysis
MEEI	Ministry of Energy and Energy Industries
MOWT	Ministry of Works and Transport
MTI	Ministry of Trade and Industry
MPD	Ministry of Planning and Development
NDC	Nationally determined contributions
NDCIP	Nationally determined contributions Implementation Plan
NGO	Non-Governmental Organisations
RCM	Regional Climate Models
SIDS	Small island developing states
SLR	Sea level rise
ТАР	Technology Action Plan
TNA	Technology Needs Assessment
TNC	Third National Communication
T&TEC	Trinidad and Tobago Electricity Commission
UNDP	United Nations Development Programme
UNEP	United Nations Environment Programme
UNFCCC	United Nations Framework Convention on Climate Change
UNESCAP	United Nations Economic and Social Commission for Asia and the Pacific
VCA	Vulnerability and Capacity Assessment

Executive Summary

The technology needs assessment (TNA) for mitigation is contained in this report. The approach to the TNA was focused on the country's Nationally Determined Contribution (NDC) and its Implementation Plan (NDC IP) under the Paris Agreement as an area of priority implementation. Accordingly, the TNA is focused on the three sectors addressed in the NDC and the NDC IP, that is, the power generation, industry, and transport sectors, as these sectors were identified as the most important where technological interventions are needed for the development opportunities in line with the establishment of carbon reduction and mitigation strategies, the imperative to achieve the NDC objectives as well as those in the National Climate Change Policy which includes the pursuance of a low carbon development trajectory. The TNA was therefore designed to fulfil both the NDC achievement as well as national development policy objectives.

The TNA therefore drew heavily on the substantive work already completed in developing the national Carbon Reduction Strategy (CRS), the NDC (which was derived from the CRS), and the NDC IP, which involved multicriteria analysis (MCA) and extensive stakeholder consultation to identify mitigation intervention options for the three sectors. The MCA included consideration of emissions reduction potential, and cost/benefit analysis of the identified mitigation measures and associated potential technologies. Stakeholders were consulted on a factsheet of the identified technologies and the MCA used.

The results of the MCA prioritised technologies in the listed order for the three sectors as follows:

Electricity generation:

- Energy Audit and Efficiency improvements of the Supply Side,
- Designing and Implementing utility scale Solar RE.

Industry:

- Renewable sources of fuel,
- Carbon capture storage and use.

Transportation:

- ICT for intelligent traffic management systems,
- Electric vehicles (EV)
- Hybrid electric vehicles (HEV).

The prioritised technologies were selected to be considered in the next step of the TNA, the barrier analysis and enabling framework.

1. Introduction

1.1 About the TNA

The Government of Trinidad and Tobago through the Ministry of Planning and Development joined a multi-country project entitled "Technology Needs Assessment (TNA) - Phase III" in collaboration with the United Nations Environment Programme (UNEP) and Danish Technical University (UNEP/DTU) Partnership with funding from the Global Environment Facility (GEF) and with technical support from the University of the West Indies (Mona) acting as the TNA Regional Centre for the Caribbean. The project intends to provide targeted financial and technical support to assist participating developing countries to carry out Technology Needs Assessments (TNAs) and develop national Technology Action Plans (TAPs) for prioritized technologies.

The Government of the Republic of Trinidad and Tobago has ratified the Paris Agreement, and the project aims to assist in implementing technologies to reduce greenhouse gas emissions in line with the country's Nationally Determined Contribution (NDC), support adaptation to climate change, and more importantly inform national development plans and contribute to sustainable development objectives. The TNA is therefore designed to address national development issues towards achievement of the National Climate Change Policy (NCCP) and pursuing a low carbon development pathway. The technology needs assessment focused on the industry, power generation and transport sectors as the NDC sectors, and will support the execution of the NDC Implementation Plan (NDC IP). Additionally, it will support Trinidad and Tobago in further defining the national technology barriers for the prioritised sectors and technologies and developing technology action plans (TAPs) to overcome these barriers for both adaptation and mitigation. These TAPs will then facilitate countries' efforts to access funding for implementation of these strategies (UNEP DTU 2014).

1.2 Existing national policies on climate change mitigation and development priorities

Table 1.2 provides an overview of the national policy and legislative context to support the TNA process and outcomes in keeping with the intention of the TNA priorities, particularly in respect of the NCCP.

Policy/Legislation Provision	Relevance to technological innovation, adaptation to climate change and development priorities
National Climate Change Policy (2011)	The Ministry of Planning and Development is the responsible ministry for developing and coordinating the implementation of the National Climate Change Policy. The Policy lists the broad objectives and strategies for climate change mitigation including renewable energy (RE), clean technologies, and research and development (R&D) In 2019, the Government initiated an updating of the Policy to incorporate provisions of the Paris Agreement, including NDC implementation.
Nationally Determined Contributions and Implementation Plan (NDC IP)	The NDC IP identified technologies and areas for three (3) sectors: power generation, industry and transportation.
Carbon Reduction Strategy (CRS)	The CRS was developed in 2015 with cost/benefit analyses of identified and recommended mitigation measures for the power generation, transport and industry sectors, based on a business-as-usual (BAU) baseline emissions projection to 2040. The NDC is based on and was derived from the CRS. In 2020, the BAU baseline was updated to 2050 and forms part of the country's Long Term Strategy (LTS).
Environmental Management Act	The Environmental Management Act (2000) mandates the establishment of programmes to manage the environment including air pollution. It authorises the Minister responsible for the environment to make Rules (subsidiary legislation), including those related to air pollution, to give legislative support to the Authority's programmes.
Certificate of Environmental Clearance (CEC) Rules	The Certificate of Environmental Clearance (CEC) Rules (2001) under the Environmental Management Act (2000) provides for mitigating potential negative environmental impacts associated with any designated activity (e.g., the release of air pollutants such as carbon dioxide and other GHGs).
National Environmental Policy	The National Environment Policy (2018) includes provisions for climate change mitigation and adaptation.
Air Pollution Rules (APR)	The Air Pollution Rules (APR) (2014) provides for the regulation of air pollution in Trinidad and Tobago, and classifies GHGs as an air pollutant.
Miscellaneous Taxes Act (Green Fund Levy)	The Miscellaneous Taxes Act (2000) Chapter 77:01 Part XIV established a national environmental fund (Green Fund Levy), to finance environmental projects to eligible entities. The Green Fund is capitalised by a 0.3% tax on gross sales of receipts of companies doing business in Trinidad and Tobago and is payable quarterly.
Finance Act	The Finance Act No.13 (2010) includes fiscal incentives to promote renewable energy and energy efficiency.

Table 1.2 Existing national policies on climate change mitigation and development priorities

Policy/Legislation Provision	Relevance to technological innovation, adaptation to climate change and development priorities
Draft National Spatial Development Strategy	The Ministry of Planning and Development is the ministry responsible for the Draft National Spatial Development Strategy which was developed in 2014. The draft strategy outlines the national development and spatial planning up to 2033 for Trinidad and Tobago.
Trinidad and Tobago Electricity Commission (T&TEC) Act	The Trinidad and Tobago Electricity Commission (T&TEC) Act (1945) identifies that T&TEC is legally authorised to generate electricity under the T&TEC Act, Chap. 54:70. All independent power producers (IPPs) must be licensed by T&TEC.
Regulated Industries Commission (RIC) Act	The Regulated Industries Commission (RIC) falls under the purview of the Ministry of Public Utilities. The RIC Act was established in 1998 and regulates the power generation sector. The RIC is mandated to perform certain regulatory functions for service providers of public utilities and for the licensing of service providers.
Renewable Energy Policy Framework	The Renewable Energy Policy Framework identifies barriers, policy objectives and strategies for renewable energy (RE) implementation and directly impacts both the industry and power generation sectors in Trinidad and Tobago.
Renewable Energy Target	A renewable energy target of 10% in the national energy mix by 2021.
Feed-in Tariff (FIT) Policy	A Feed-In Tariff (FIT) Policy is being developed by the Ministry of Energy and Energy Industries. The draft policy develops a framework for policy and legislation to govern Feed-In tariffs for renewable energy feed into the national grid.
ESCO Certification Committee	The Ministry of Energy and Energy Industries has established an ESCO Certification Committee in 2016. It has produced draft recommendations which outline certification criteria for energy services companies (ESCOs) in Trinidad and Tobago in order to operationalise the fiscal incentives of the Finance Act No. 13 of 2010.
Petroleum Act	The Petroleum Act (1969) provides for any licensee "to take care that gas is not liberated in such manner as to cause pollution of the surrounding air and to prevent all waste". This section can be used to control the flaring of natural gas.
National Transport Plan (NTP)	Established in 1967, the National Transport Plan outlines strategy for development of road networks and was scheduled for complete revision by 1986.
Motor Vehicle and Road Traffic Act	The Motor Vehicle and Road Traffic Act (2010) identifies the rules and regulations for licensing and owning a vehicle. There is also an amendment to the Act which includes a fine for visible emissions from vehicle. GHG emissions are however not explicitly included in the Act, although there is potential for its inclusion.

1.3 Sector selection

Trinidad and Tobago's NDC commits to a 15% reduction in cumulative greenhouse gas (GHG) emissions in the industry, power generation, and transportation sectors relative to a business-asusual baseline by 2030. The sectors targeted in the NDC were prioritised for the TNA given the need to achieve its objectives as well as through previous stakeholder consultations which developed the Carbon Reduction Strategy from which the NDC was derived. A substantive amount of work had already been done therefore, and the TNA would now advance the process of NDC implementation as well as laying the technology pathway for a low carbon development trajectory consistent with the objectives of the NCCP. The NDC IP outlines the actions necessary for achieving the NDC target. A recent review of the mitigation measures in the NDC IP (2020, unpublished) provided updated figures for the sectors and which were used in the TNA.

Recent estimates (2018) indicate that total emissions projections for Trinidad and Tobago can increase between 6 and 30% to 2050 based on various socio-economic business-as-usual scenarios (GoRTT, 2019). In these estimates, the industry, power generation and transportation sectors accounted for approximately 60.5 %, 12.2 %, and 5.6% of the total GHG emissions respectively.

1.4 An overview of sectors, projected climate change, and GHG emissions status and trends of the different sectors

1.4.1 Electrical power generation

In Trinidad and Tobago, natural gas is used for electrical power generation, and was introduced in 1953 as a cleaner and more economical fuel, and therefore is already at the cleaner end of fossil fuel type. However, a mix of combined and simple cycle turbines for power generation creates some space for increased efficiency, but more importantly, the next step for reducing emissions from this sector lies in the deployment of renewable energy sources, coupled with consumption efficiency. It is estimated for an optimistic economic growth scenario under a business-as-usual (BAU) trajectory projection, that GHG emissions for the power generation sector could grow to as much as 28% from 2018 levels up to 2050(NDC, IP 2020).

The power generation sector is a monopoly in Trinidad and Tobago and involves a single transmission and distribution network operator. The sector has limited renewable energy experience regarding utility scale generation of electricity. There are also separate government ministries tasked with the responsibility for power generation, transmission and distribution. There are limited renewable energy resource options (limited to solar and wind but potential for ocean-based energy), limited land available for renewable energy and limited data available for applicable renewable energy studies. Additionally, there are weak fiscal support mechanisms for energy conservation or alternative cleaner energy sources.

The enabling environment for renewable energy needs significant work as the existing policy and legislative framework, although being amended, is inadequate. Current subsidies on both fuel and electricity further hinder the uptake of renewables. Trinidad and Tobago currently has the second lowest electricity rates after Suriname in the English-speaking Caribbean.

Current legislation does not permit generating electricity outside of the existing monopolistic arrangements. However, efforts are underway, and significant progress is being made, towards developing demand-side management initiatives, a feed-in tariff policy framework for renewable energy, and amendment of the legislation to encourage and enable power generation through renewable sources.

1.4.2 Industry

Industry refers to heavy industry which includes petroleum exploration and production, pipeline operation, natural gas processing, refining, iron and steel processing, LNG production, cement manufacture and petrochemical production.

It is estimated for an optimistic economic growth scenario under a business-as-usual (BAU) projection trajectory that GHG emissions for the industry sector could grow to as much as 21% from 2018 levels up to 2050 (NDC, IP 2020). The majority of the GHG emissions of the industrial sector are caused by fossil fuel combustion sources, although process-based emissions such as nitrous oxide from nitric acid production and carbon dioxide from ammonia production also contribute. Not only is the industry sector the largest contribution to the GHG emissions, but this situation is also not expected to change significantly through 2050, according to the results of the projections model.

The energy sector is one of the most important sectors in T&T. It amounts to 45.3% of national GDP (2011), provides almost 60% of government revenue, and is the most important export commodity with 83% of merchandise exports, mainly refined oil products, liquefied natural gas (LNG), and natural gas liquids (IDB, 2013). T&T is the main exporter of oil in the Caribbean, as well as the main producer of LNG in Latin America and the Caribbean (IDB 2018).

1.4.3 Transport

Domestic transport in Trinidad and Tobago includes sea, land and air travel. The current transport system evolved as a consequence of the fuel-subsidy policies of the country and has resulted in a large number of privately-owned cars due to the unattractiveness, inadequacy and inefficiency of existing public transport systems to meet the needs of the population. The fuel subsidy is carded to be eliminated in Jan 2021.

The transport sector is the main consumer of the 20% of local consumption of the daily oil production (IDB, 2013). The transport sector contributed 5.6% of total GHG emissions in 2018 (GORTT). It is estimated for an optimistic economic growth scenario under a business-as-usual (BAU) trajectory that GHG emissions for transport could grow to as much as 144% from 2018 figures up to 2050 (NDC, IP 2020).

2. Institutional arrangement for the TNA and the stakeholder involvement

2.1 The National TNA team

The National TNA team consisted of the contracted consultants along with staff from the Ministry of Planning and Development (National Coordinator). This team was responsible for the coordination of the National TNA Advisory Committee, which had representation from a wide cross section of agencies and ministries which hold responsibility for the sectors identified in the TNA process. The TNA Advisory Committee comprised of representatives of the following organisations:

- 1. Council of Presidents for the Environment (Cope) (Non-governmental Organisation)
- 2. The University of the West Indies (UWI)
- 3. The University of Trinidad and Tobago (UTT)
- 4. The Environmental Management Authority (EMA)
- 5. The Institute of Marine Affairs
- 6. The Energy Chamber of Trinidad and Tobago
- 7. Water Resources Agency
- 8. The Water and Sewerage Authority of Trinidad and Tobago (WASA)
- 9. The Office of Disaster Preparedness and Management (ODPM)
- 10. Trinidad and Tobago Meteorological Services (TTMS)
- 11. The Office of the Prime Minister
- 12. Ministry of Agriculture Land and Fisheries
- 13. Ministry of Energy and Energy Industries
- 14. Ministry of Finance
- 15. Ministry of Planning and Development
- 16. Ministry of Public Utilities
- 17. Ministry of Rural Development
- 18. Ministry of Tourism
- 19. Ministry of Works and Transport

2.2 Stakeholder Engagement Process followed in the TNA – Overall assessment

Given the fairly advanced state of development of analysing mitigation measures for the sectors addressed in the NDC, including cost/benefit analyses, emissions projections, and potential technological approaches already identified in the NDC IP, a decision was taken to focus on these sectors for conducting the TNA. Accordingly, and building on the work already done, the TNA approach initially involved identifying potential technologies through a literature review of the relevant country implementation plans for the reduction of GHG emissions including the CRS, the NDC and NDC IP, and upon which a technology factsheet was developed (Annex I). Based upon this, a MCA was developed along the lines adopted in the CRS and NDC (including cost/benefit, mitigation potential, socio-economic issues) and applied to the identified technologies. A draft report was generated, and consultations on this report were conducted with key stakeholders.

The stakeholders consulted during the development of the background documents (CRS, NDC, NDC IP) were identified as important having been already involved in the process and familiar with the mitigation issues, such as the MCA, identified mitigation measures, and applicable technologies. Some of these stakeholders are also included on the TNA Advisory Committee. Stakeholders were invited to comment and give feedback on the first draft of the TNA Report for Mitigation as well as identify potential barriers and the enabling framework for the next step of the TNA. This approach was taken as stakeholders for the climate mitigation process in Trinidad and Tobago are consistently engaged and are key collaborators for the implementation of all mitigation work. There is therefore a fairly well-developed awareness and engagement of stakeholders for mitigation issues.

2.3 Consideration of Gender Aspects in the TNA process

The key actions identified from the TNA gender guidebook include identifying policy areas that potentially affect men and women in different ways for the implementation of each technology. Consultations with men's and women's organisations can highlight key policy issues for further analysis, collect gender-disaggregated data and gender information related to these key areas identified, conduct gender analysis to determine differentiated outcomes or impacts for men and women of proposed policy areas, design policy which incorporates actions to address these differentiated outcomes and impacts so that inequality is not perpetuated, and ensure that institutional mechanisms for the implementation and monitoring of policy actions include women and women's NGOs in decision-making bodies.

An Action Plan for Mainstreaming Gender in the Climate Change Sector and NDC Implementation in Trinidad and Tobago has been developed and was therefore translated into the TNA process. In the TNA process, the inclusion of women in decision making as well as identification and scoring of the related technologies was made a priority with eight of the seventeen agencies being represented by women on the stakeholder committee.

3. Technology prioritisation for Electrical Power Generation

3.1 GHG emissions and existing technologies of Electrical Power Generation

The power generation sector contributed 60.5% of total GHG emissions in 2018 (GORTT). It is estimated for an optimistic economic growth scenario under a business-as-usual (BAU) trajectory, that GHG emissions for the power generation sector could grow to as much as 28% from 2018 figures up to 2050.

Current electricity power generation is done using natural gas as feedstock and a combination of simple and combined cycle gas turbines. Substituting these simple turbines with combined-cycle plants could improve efficiency up to 45% (IDB 2015). Coupled with the implementation of energy efficiency measure for buildings and industrial processes, this would mean a reduced demand for electricity and reduction in the related gas consumption, reducing the direct and indirect GHG emissions.

Electricity in Trinidad and Tobago is generated by Power Generation Company of Trinidad and Tobago (Powergen), Trinidad Generation Unlimited (TGU) and Trinity Power Limited. Powergen currently operates two plants at Point Lisas (763 MW single cycle with co-generation being currently considered) and Penal (234 MW combined cycle). TGU is a combined cycle plant (720 MW) and Trinity Power utilises single cycle generation turbines (22MW) (TGU 2020).

The current low tariffs on electricity subsidies make the price of electricity one of the lowest in the LAC region and is a major barrier to the uptake of energy efficient measures for both domestic and commercial consumers and furthermore make the use of PV and other RE technology uncompetitive (ICAO 2019)

3.2 Decision context for electrical power generation

3.2.1 An overview of selected mitigation technology options in Electrical Power Generation and their mitigation potential and other co-benefits

The prioritisation of technologies was carried out through the use of a MCA for the TNA process. The information for the technologies listing and the relevant criteria were taken directly from both the NDC IP, and the CRS. Given that Trinidad and Tobago already uses natural gas, the cleanest fossil fuel for power generation, mitigation technology options are narrow and potential mainly lies in efficient generation and consumption, and renewable energy.

There are several mitigation measures and technologies for Trinidad and Tobago for reducing GHG emissions in the Electrical Power Generation sector. The conversion of existing single-cycle to combined-cycle gas turbines (CCGT) power plants - a combined use of sets of components: combustor of gas, gas turbine, heat recovery boiler, steam turbine - was once envisioned to be a technology of choice for the energy efficiency improvements in power generation is already underway.

The identified technologies, taking into account that there is already conversion to combined cycle gas turbine technology in power generation, were guided by the mitigation analysis conducted under the CRS (2016) and NDC IP (2020), and the short list of technologies chosen to perform a multi-criteria analysis are listed below in Table 3.2 (in no order of rank):

Technology	CO ₂ Mitigation potential
Energy Audit and	Energy audit and updating of the generating plants and generation dispatch
Efficiency improvements	algorithms.
of the Supply Side	
Cooperative renewable	This would encourage RE participation by a wider economic cross section
energy (RE) (Solar)	and Solar RE generation on a small scale.
Utility Scale Renewable	Gradual replacement of fossil-based power generation by solar plants as
(Solar) Energy	the old fossil plants are retired, and the natural gas reserves are depleted.
Solar powered water	If solar panels are installed, there would be cost reductions even
treatment plants	considering the payback period. Additionally, use of these solar panels
	would improve the country's resilience in case of a natural disaster.

Table 3.2 List of technologies chosen for MCA for electrical power generation

3.3 Criteria and process of technology prioritisation for Electrical Power Generation

The Electricity Power Generation Sector is a single operator transmission and distribution network, and it is therefore important to evaluate on the basis of reduction in emissions for mitigation. It was also identified that the benefit/cost ratio, perceived importance and urgency, job creation, and generation of economic activity were also important in evaluating measures to reduce CO_2 emissions in any sector that generates economic activity for the country (CRS 2015). The calculated level of CO_2 emissions identified in the NDC IP was used as a baseline for the technology prioritisation using the MCA approach.

The carbon emissions reduction was calculated by comparing the emissions associated with the generation of electricity through renewable sources, compared with the purchase of the same amount of electricity from the network using natural gas as the feedstock. The results of the prioritisation MCA is shown in Table 3.4. The top two technologies were moved forward to the Barrier and Analysis and Enabling Framework (BAEF) stage.

3.4 Results of technology prioritisation for Electrical Power Generation

Table 3.4 List of prioritised technologies after MCA

Technology Name			(Criterion				Rank
	Environment/ CO	₂ reduction	Cost Effectiveness		Overall Evaluation of Importance			
	40%		30%	6	30%	6	100%	
	Mitigation potential - Total CO ₂ Avoided (figures NDCIP 2020 review) in tCO ₂ e	Normalised Score	Cost Efficiency (figures from NDCIP 2020 review)	Normalised Score	Importance (figures from NDCIP 2020 review)	Normalised Score	Final Weighting	
Energy Audit and Efficiency improvements of the Supply Side	751,915.80	75.69	-23	100.00	3.6	100	90.28	1st
Designing and Implementing utility scale Solar RE	986,876.10	100.00	57.2	0.00	3.5	90	67.00	2nd
Cooperative Solar RE	27,723.00	0.77	33.7	29.30	2.7	10	12.10	3rd
Solar power water treatment plants	20,247.90	0.00	35.7	26.81	2.6	0	8.04	4th

Normalised Score=100 *(score-Xmin)/(Xmax-Xmin) were 100=most desirable score and 0=least desirable score

4. Technology prioritisation for Industry Sector

Trinidad and Tobago has a significant industrial sector. Crude oil and natural gas are consumed in large quantities in several industry sub-sectors as fuel and feedstock for export products. Most recent statistics show that the Petroleum Sector accounted for an estimated 40.2% of the national GDP and 38.7% of Government revenues in 2012. For the purpose of this study, industry refers to heavy industry which includes petroleum exploration and production, pipeline operations, natural gas processing, refining, iron and steel processing, LNG production, cement manufacture, and petrochemical production. Electricity generation and distribution is treated under the Power Generation Sector. Light manufacturing, which refers to economic activities related to food and beverages and printing and packaging, is not included.

4.1 GHG emissions and existing technologies of Industry Sector

In 2011 the commercial and industrial sector accounted for approximately two thirds of the country's energy consumption (CRS 2015). The industry sector in Trinidad and Tobago accounted for the highest GHG emissions from 1990 to 2018, with a contribution of 60.5% total CO₂ eq. emissions in 2018. It is estimated for an optimistic economic growth scenario under a business-as-usual (BAU) trajectory that GHG emissions for the industry sector could grow to as much as 21% from 2018 figures up to 2050. The majority of the GHG emissions of the industrial sector are caused by fossil fuel combustion sources. Not only is the industry sector the largest contribution to the GHG emissions, but furthermore, this situation is not expected to change through 2050 according to the results of the projection models.

The vast industrial landscape of Trinidad and Tobago provides numerous opportunities for reduced GHG emissions through the use of renewable technology, improvements in energy efficiency of plants and equipment and even adjustments in processes. Specific assessments therefore are required to determine what are the best available technologies and actions needed to improve the efficiency and reduce the GHG emissions.

The manufacturing plants in the industrial sector consume the largest quantity of energy in Trinidad and Tobago and the most effective reductions can be achieved through reducing the energy consumption of these facilities. Process-based greenhouse gas emissions, particularly nitrous oxide emissions from nitric acid production was also identified for mitigation action given its large global warming potential.

Concerning fugitive and vented emissions, these are directly related to the production of natural gas and oil. In order to reduce their impact, measures must be oriented towards monitoring these leaks so that they can be rectified and at seeking alternatives for recapture and reusing them.

4.2 Decision context for Industry Sector

4.2.1 An overview of selected mitigation technology options in the Industry Sector and their mitigation potential and other co-benefits

The prioritisation of technologies was carried out using a multi criteria analysis for the TNA process. The information for the technologies listing and the relevant criteria were taken directly from both the NDC IP (as well as the unpublished review), and the CRS. The technologies chosen for MCA are listed in Table 4.2.

Technology	CO ₂ Mitigation potential
Biofuels	The reduction of emissions in this measure is based on the substitution of natural gas by biofuels. It is estimated that 10% of natural gas consumption can be replaced by alternative fuels by 2050.
Captured Carbon	The available potential could reduce emissions generated by the industrial sector by 10% under a trend scenario.
Blue and green hydrogen	It is estimated that 10% of natural gas consumption can be replaced by alternative fuels by 2050.
NO _x Abatement technologies	Plant retrofit for lower process emissions and reduction in emissions from venting.

Table 4.2 List of technologies for Industry chosen for MCA (in no order of rank).

4.3 Criteria and process of technology prioritisation for Industry

The criteria used to evaluate the technologies for the industry sector included GHG emissions reduction potential (taken from the projected emissions reductions calculated for the NDC IP), benefit/cost ratio, perceived importance and urgency, job creation, and generation of economic activity. The results of the MCA are shown in Table 4.4. The top two technologies were moved forward to the Barrier and Analysis and Enabling Framework (BAEF) stage.

4.4 Results of technology prioritisation for Industry

Table 4.4 List of prioritised technologies after MCA.

	Criteria							
	Environment/ CO ₂		Cost		Overall			
	reduction		Effectiveness		Importance			
Technology	30%		40%		30%		100%	Rank
Name	Mitigation potential - Total CO2 Avoided (figures from NDC IP) tCO ₂ e	Normalised Score	Cost Efficiency (figures from NDC IP)	Normalised Score	Importance (figures from NDC IP)	Normalised Score	Final Weighting	Kalik
Captured Carbon	44573060.00	100.00	59.5	51.52	3.3	88	76.86	1st
Biofuels	1107884.20	0.0000	-4.4	100.00	3.4	100	70.00	2nd
Blue and green hydrogen	1108960.40	0.0025	127.4	0.00	2.9	38	11.25	4th
NO _x Abatement technologies	1745407.00	1.4667	1.36	95.63	2.6	0	38.69	3rd

Normalised Score=100 *(score-Xmin)/(Xmax-Xmin) were 100=most desirable score and 0=least desirable score

5. Technology Prioritisation for Transport Sector

5.1 GHG emissions and existing technologies of Transport Sector

Trinidad and Tobago's transport sector comprises three components: sea, land and air, and is a major contributor to greenhouse gas emissions. The transport sector is the main consumer of the 20% of local consumption of the daily oil production (IDB, 2013). The transport sector contributed 5.6% of total GHG emissions in 2018 (GORTT). It is estimated for an optimistic economic growth scenario under a business-as-usual (BAU) trajectory that GHG emissions for transport could grow to as much as 144% from 2018 figures up to 2050.

The availability of historical data on GHG emissions of the transport sector in Trinidad and Tobago is limited, and there are several data gaps that make it difficult to obtain a comprehensive and coherent picture of the historical evolution of the transport sector's emissions. The total number of vehicles registered grew by 4.8 % for the period January to July 2019, when compared to the same period in 2018 (CBTT 2019). The number of private motor vehicles registered for January to July was 10,876 and represented a 5.3% increase from the previous year (CBTT 2019).

The exiting fuel subsidy is scheduled to be eliminated in Jan 2021. The uptake of CNG which was offered as a transition technology towards hybrid and electric vehicles, has been slowly increasing. EV and hybrid vehicles are subsidised and available as both new and imported used. There also needs to be development of infrastructure to power as well as service these types of vehicles. It is also important to note however, the use of electricity from fossil fuels to power an electric or hybrid vehicle still accounts for indirect GHG emissions, although there are policy indications that ideally the country intends to move to emissions-free transport through electric vehicles charged by renewable energy.

5.2 Decision context for the Transport Sector

The transport sector accounted for 5.6 % of the GHG emissions for 2018 and technologies were chosen that accounted for the reduced GHG emissions from the primary road-based factors like miles travelled, type of fuel and operational efficiency of vehicle. While there is already an aggressive drive for fuel-switching to compressed natural gas, and which is being progressively deployed, the global trend towards phasing out internal combustion engines has been taken into account. The list of technologies chosen for MCA is shown in Table 5.2 (in no order of rank).

5.2.1 An overview of possible mitigation technology options in Transport Sector and their mitigation potential and other co-benefits

Technology Name	CO ₂ Mitigation potential
Electric Vehicles (EVs) and	Introduction of EV and HEV for public transport vehicles including
Hybrid Electric and	buses and maxi taxis; Reduction in consumption of fossil fuels and CO2
Gasoline vehicles (HEV)	emissions.
Biogas for marine	Use of alternative fuel for marine navigation and other systems on ships
navigation	in order to reduce the overall CO emissions associated with the use of
	fossil fuels.
Information Communication	Promote of ICT technologies to avoid the need to travel, red light
Technology (ICT)	coordination and traffic management systems to reduce traffic and
	increase traffic coordination.
Vehicle emissions	Establish vehicle registration fees and taxes to control vehicle emissions
monitoring systems	and promote efficient vehicles with lower fossil fuel consumption.

Table 5.2 List of technologies chosen for the Transport sector to perform multi-criteria analysis

5.3 Criteria and process of technology prioritisation for Transport Sector

The criteria for the technology prioritisation of the Transport Sector were taken from figures found in the CRS as a preliminary weighting. The process involved weighting each of the 6 identified technologies based on quantity of CO_2 reduced, perceived importance and urgency, job creation, and generation of economic activity.

The environmental impact in the form of amount of CO_2 reduction was weighted as 40%, the benefit cost analysis was weighted at 30% and the overall importance as 30% which included the generation of jobs, economic activity and perceived importance of the technology. The results of the MCA are shown in Table 5.4. The top three technologies were moved forward to the Barrier and Analysis and Enabling Framework (BAEF) stage. These were Information Communication Technology (ICT), electric vehicles (EV) and hybrid electric vehicles (HEV). HEV and EV were scored and rated together but will be treated separately in the BAEF stage.

5.4 Results of technology prioritisation for the Transport Sector after Multi-Criteria Analysis

Table 5.4 technology prioritisation for the Transport Sector after Multi-Criteria Analysis

			Criteria	l				
	Environment/ CO ₂ Reduction		Cost Effectiveness		Overall Evaluation		100%	
	40%		30%		30%			
Technology Name	Mitigation potential - Total CO ₂ Avoided (figures from CRS) tCO ₂ e	Normalised Score	Cost Efficiency (figures from CRS)	Normalised Score	Importance (figures from CRS)	Normalised Score	Ra Final Weighting	Rank
Information Communication Technology (ICT)	2281050.00	100.00	-151.90	28.39	51	100	78.52	1st
EV and HEV	668969.00	5.19	-791.41	100.00	42	67	52.08	2nd & 3rd
Vehicle emissions monitoring systems	580743.00	0.00	101.63	0.00	48	89	26.67	4th
Biogas for marine navigation	780777.00	11.76	60.01	4.66	24	0	6.10	5th

Normalised Score=100 *(score-Xmin)/(Xmax-Xmin) were 100=most desirable score and 0=least desirable score

6. Summary and Conclusions

6.1 Final list of technologies chosen to move to BAEF

The list of prioritised technologies for the three sectors, electrical power generation, industry and transport will enable Trinidad and Tobago to implement mitigation measures in the sectors where the CO_2 -eq emissions are the largest. The top two technologies for each sector will be used for the next step of the TNA Process, the Barrier Analysis and Enabling Framework. These technologies are as follows:

Technology Name	Rank
Electrical Power Generation	
Energy Audit and Efficiency improvements of the Supply Side	1st
Designing and Implementing utility scale Solar RE	2nd
Industry	
Captured Carbon	1st
Biofuels	2nd
Transport	
Information Communication Technology (ICT) for intelligent traffic	1st
management systems	
Introduction of Electric and Hybrid Electric Vehicles, EV and HEV for	2nd & 3rd
both public transport and private vehicles	

7. List of References

- Using Smart Transport Technologies to Mitigate Greenhouse Gas Emissions from the Transport Sector in Asia, 2020. Unescap.Org. <u>https://www.unescap.org/sites/default/files/Chapter03%20-</u> %20Smart%20Transport%20Technologies.pdf (UNESCAP 2020)
- Summary of economic indicators, Central Bank of Trinidad and Tobago June 2019, Central-Bank.Org.Tt. 2020. <u>https://www.central-bank.org.tt/sites/default/files/reports/summary-economic-indicators-bulletin-june-2019.pdf</u>. (CBTT 2019)
- 3. "Our Process Trinidad Generation Unlimited". 2020. Tgu.Co.Tt. <u>https://www.tgu.co.tt/about-us/our-process/#:~:text=The%20power%20plant%2</u> (TGU 2020)
- Barett, Stephen, 2018, Feasibility Study on the use of SOLAR energy at piarco international airport, <u>https://www.icao.int/environmental-</u> protection/Documents/SolarFeasabilityStudies_PiarcoTrinidadTobago_Report-July9web.pdf International Civil Aviation Organisation, (ICAO 2018)
- 5. Ministry of Energy and Energy Industries, "Development of a Renewable Energy Policy Framework." 2020. <u>https://www.energy.gov.tt/our-business/alternative-</u> <u>energy/development-of-a-renewable-energy-policy-framework/</u>. (MEEI 2020)
- 6. Marzolf, N., Caneque, F., Klein, J. and Loy, D., 2015. A Unique Approach for Sustainable Energy In Trinidad And Tobago. Inter-American Development Bank (IDB 2015).
- Ministry of Planning and Development, 2020, Report on measures, Phase 2 Analysis of mitigation measures and mitigation options to support the preparation of T&T's TNC, Part A, Potential Mitigation Measures, (NDCIP 2020, unpublished)
- 8. Dhar, S., Painuly, J. Nygaard, I., and Rogat, J. 2014. Organising the National TNA Process: An Explanatory Note, UNEP DTU Partnership, (UNEP DTU 2014)

8. Annex I Technology Factsheets for selected technologies

8.1 Electrical Power Generation

Energy Audit and Efficiency improvements of the Supply Side	
	to optimizing the efficiency of Electric Power Generation,
	Proper Supply side management involves energy audit and updating
	dispatch algorithms, plant and equipment.
Timeframe	Short 2-5 years
Required implementation	1. Establishment of multi-stakeholder audit and research
	team
	2. Identifying power management issues and solutions
	3. Implement and updating plant, equipment and
	management of utility
Mitigation Potential	This measure is aimed at designing models/programs that help to
	optimize the energy consumption of the industry and therefore to
	improve its energy efficiency by reducing consumption and
	related emissions. Since energy industries are large consumers of
	energy, the study estimates that an annual reduction of 1% of total
	demand could be obtained (10-15MW).
	Accumulated: 751,916 tCO ₂ e
	Annual average: 50,128 tCO ₂ e.
Relevant agencies	TTEC, MEEI
Barriers	Lack of installed technology to measure generator performance
	required for optimization studies
Advantages/opportunities/Co-	-Low cost if done in conjunction with local universities
benefits	- Opportunities for innovation.
	- Better prepared professionals.
	- Jobs formation.
	- Increase of energy efficiency.
	- Air quality improvement that implies health benefits and less
	public health costs

Cooperative Renewable Energy

Solar Cooperative Renewable Energy for small to medium scale renewable energy installations with private investment from localized communities. This would allow Renewable Energy participation by a wider economic cross-section. Facilities would be metered and used to compensate shareholders.

Timeframe	Greater than 10 years
Required implementation	1. Feasibility studies (including business structure and
	potential sites)
	2. Establishment of coordinating body or government
	company to oversee deployment
	3. Development of Pilot sites
	4. Nationwide expansion of program
Mitigation Potential	Directly reduces GHGs by reducing fossil fuel generation.
C	The reduction of emissions is due to the use of renewable energy
	with an emission factor of 0 compared to a trend consumption of
	the same coming from the electrical system. Therefore, to
	calculate the reduction through this measure, the emissions
	associated with the generation of electricity through renewable
	energies are compared with the purchase of the same amount of
	electricity from the network, assuming the EF of the country's
	electricity mix (if this system were not available, what associated
	emissions this purchase of electricity would have). The study
	considers the installation of 200kW per year over the period
	analysed.
	Accumulated: 27,723 tCO ₂ e
	Annual average: 1,848 tCO ₂ e.
Relevant agencies	MPU, MEEI, MPD, TTEC, RIC, AGLA
Barriers	Lack of policies governing RE and feed in tariffs
Advantages/opportunities/Co-	- Allows a wider section of society to participate.
benefits	- Opportunities for innovation.
benefits	- Increase of energy efficiency.
	- Air quality improvement that implies health benefits and less
	public health costs.
Synergies and/or trade-off	Builds climate and disaster resilience in communities.
with adaptation	
Synergies and/or trade-off	Aids in creating new jobs for RE technicians
with other development	
aspects	

Utility Scale Renewable Energy

Designing and Implementing utility scale RE Installations with appropriate storage capabilities. This would allow Utility Scale RE Power generation to replace fossil-based power generation gradually, as the old fossil plants are retired, and the natural gas reserves are depleted.

Timeframe	Greater than 10 years
Required implementation	1. Feasibility studies (technical and economic)
	2. RFPs
	3. PPAs with IPPs
	4. Installation of RE facilities
Mitigation Potential	The reduction of emissions is due to the use of renewable energy with with an emission factor of 0 compared to a trend consumption of the same coming from the electrical system. Therefore, to calculate the reduction through this measure, the emissions associated with the generation of electricity through renewable energies are compared with the purchase of the same amount of electricity from the network, assuming the EF of the country's electricity mix (if this system were not available, what associated emissions this purchase of electricity would have). The study considers additional installed capacity of 100MW of renewables by 2050. Accumulated: 986,876 tCO ₂ e
	Annual average: 65,792 tCO ₂ e.
Relevant agencies	MPU, TTEC, RIC, MEEI
Barriers	-Cost of implementation
	 -Low rates of Electricity using conventional generation -Lack of legislative and policy frameworks. -Compromised grid security and stability with increasing penetration of RE
Advantages/opportunities/Co-	- Directly reduces GHG emissions by replacing fossil fuel
benefits	 generation. Increase of general knowledge. Opportunities for innovation. Increased energy security Air quality improvement that implies health benefits and less public health costs. Increased Energy Security
Synergies and/or trade-off	Increased climate resilience

Solar power for water treatment plants		
Use of solar power for water tre	Use of solar power for water treatment plants e.g. use of floating solar panels in dams/reservoirs	
Timeframe	1-5 years	
Required implementation	Prepare Feasibility Study Project Proposal Approval, Tender process, Contract with Private entity to supply, install and operate Purchase panels - Install panels - Provide feedback on effectiveness and efficiency of panels in use	
Mitigation Potential	The reduction of emissions is due to the use of renewable energy with an emission factor of 0 compared to a trend consumption of the same coming from the electrical system. Therefore, to calculate the reduction through this measure, the emissions associated with the generation of electricity through panels are compared with the purchase of the same amount of electricity from the network, assuming the EF of the country's electricity mix (if this system were not available, what associated emissions this purchase of electricity would have). The study considers additional installed capacity of 1MW which covers an area of about 5 acres. Accumulated: 20.248 tCO ₂ e Annual average: 1.350 tCO ₂ e.	
Relevant agencies	WASA T&TEC Ministry of Public Utilities, MEEI, Ministry of Trade and Industry - Customs and Excise Division, desalination plants, Ministry of Energy and Energy Industries.	
Barriers	 Capital cost The cost of traditional energy (fossil fuel) is subsidized by the GORTT therefore making it substantially cheaper than renewable energy Available Surface Area Political will, Vision to transition and invest in alternative energy supply. Security of panels 	
Advantages/opportunities/Co- benefits	- This would allow the water company to reduce their costs over time and thus enable them to focus on other areas such as access for all to potable water. It would also aid in GHG reduction targets of the companySaving large areas of landJob creation. -Reduce evaporation from water reservoirs, as the solar panels provide shade and limit the evaporative effects of windImprove water quality, through decreased algae growthReduce or elimination of the shading of panels by their surroundings Eliminate the need for major site preparation, such as levelling or the laying of foundations, which must be done for land-based installationsThe same solar energy they produce can be used for the operation of ventilators and devices that allow water to circulate in order to oxygenate it and keep it in good condition,	

Trinidad and Tobago – Technology Needs Assessment – Identification and Prioritization of Technologies for Mitigation

nance.
build form part of the country's response to disasters such as nes or floods. It is also linked to the country's commitment of reductions.

Reference NDC, IP 2020

8.2 Industry

Г

Biogas as a Renewable Source of Fuel	
Timeframe	5 to 10 years
Required implementation	 Feasibility studies (Renewable Fuel Production potential vs importation) If RE Technology is feasible, the power generation sector is
	open for RFPs for new power generation.
	 Tendering and contractor selection Phased implementation continuing as required
Mitigation Potential	The reduction of emissions in this measure is based on the substitution of natural gas by biofuels. It is estimated that 10% of natural gas consumption can be replaced by alternative fuels by 2050. Therefore, in the case of biogas (considering that there will be a mix with more biofuels), 5% of consumption can be reached in 2050 (Replacement of 3,194 TJ of natural gas per year).
	Accumulated 1,107,884 tCO2e
Relevant agencies	Annual average: 73,859 tCO2e. AGLA, MEEI, MPU MPaD
Barriers	 Natural Gas Subsidy Political Inertia Availability of Renewable fuels in enough quantities
Advantages/opportunities/Co- benefits	 Since Renewable fuels are chemically identical to their fossil fuel counterparts no change in operation process is necessary. Opportunities for innovation. Air quality improvement that implies health benefits and less public health costs. Jobs formation.
Synergies and/or trade-off	New industry in the production of biofuels is possible which would create employment

Captured Carbon Development of downstream industries to make use of captured carbon so that it is feasible for industries to implement carbon capture technologies which would otherwise not be economically feasible.	
Required implementation	 Establish task force to determine feasibility of downstream captured carbon industries and detail plans for industry development. If feasible: RFPs, Tendering and contractor selection Implementation on a phased basis in the long term
Mitigation Potential	Emission reductions are estimated based on carbon capture potential. The reduction of emissions is associated with carbon capture technologies. The study considers that the available potential could reduce emissions generated by the industrial sector by 10% under a trend scenario. Accumulated 44,573,060 tCO ₂ e Annual average: 2,971,537 tCO ₂ e.
Relevant agencies	MEEI, MPaD, Energy Chamber, Industry stakeholders
Barriers	 Cost and recovery costs Lack of financial incentives Possible long term liability risks Lack of current regulatory framework for CCS
Advantages/opportunities/Co- benefits	 Opportunity for creation of new industries and jobs. Air quality improvement that implies health benefits and less public health costs.
Synergies and/or trade-off	- Opportunity for creation of new industries and jobs

Hydrogen for e-fuel Production of blue and green hydrogen for e-fuel conversion for industrial, power generation and transportation.	
Required implementation	 Establish task force for determining feasibility of blue and green hydrogen programs and detail plans for development If feasible: RFPs, Tendering and contractor selection Implementation on a phased basis in the long term
Mitigation Potential	The reduction of emissions in this measure is based on the substitution of natural gas by biofuels. It is estimated that 10% of natural gas consumption can be replaced by alternative fuels by 2050. Therefore, in the case of hydrogen (considering that there will be a mix with more biofuels), 5% of consumption can be reached in 2050 (Replacement of 3,194 TJ of natural gas per year). The study considered the replacement of natural gas with green hydrogen , to which no GHG emissions are associated. Accumulated 1,107,884 tCO ₂ e.
Relevant agencies	MEEI, MPD, Energy Chamber, Industry stakeholders
Barriers	 Cost of hydrogen production, storage and distribution Competing low cost of fossil fuels
Advantages/opportunities/Co- benefits	 Opportunity for creation of new industries and jobs. Air quality improvement that implies health benefits and less public health costs.
Synergies and/or trade-off	- Opportunity for creation of new industries and jobs

NO _x Abatement technologies in the Industrial Sector	
	missions and reduction in emissions from venting and flue gas manufacturing processes, plastic and cement manufacturing
Timeframe	1-5 years
Required implementation	 Feasibility study on relevant industrial manufacturers Phased implementation in manufacturing process
Mitigation Potential	Accumulated Average of 1,745,407 tCO ₂ e
Relevant agencies	MEEI, MPD, Energy Chamber, Industry stakeholders
Barriers	 Capital Cost Lack of financial incentives or policy regulatory requirements Low cost of energy limiting incentives for improving manufacturing processes
Advantages/opportunities/Co- benefits	 Opportunity for creation of new industries and jobs. Air quality improvement that implies health benefits and less public health costs.
Synergies and/or trade-off	- Capacity building for increased process efficiency

Reference NDC, IP 2020

8.3 Transport

Γ

Electric vehicles (EVs) and Hybrid electric vehicles (HEV)	
Introduction of battery electric v	ehicles and hybrid electric vehicles for use in both public transport,
buses, and cars.	
Timeframe	1-5 years
Required implementation	- Feasibility study on relevant industrial manufacturers
	- Phased implementation in manufacturing process
Mitigation Potential	Accumulated Average of 1,745,407 tCO ₂ e
Relevant agencies	MEEI, MPD, PTSC
Barriers	- Capital Cost
	- Lack of financial incentives or policy regulatory
	requirements
	- Low cost of gasoline limiting uptake of technologies
Advantages/opportunities/Co-	- Air quality improvement that implies health benefits and
benefits	less public health costs.
	- More reliable public transport system
0 1/ . 1 00	- Job Creation
Synergies and/or trade-off	- Capacity building
	- More efficient public transport
	Biogas for marine navigation
	e navigation and other systems on ships in order to reduce the overall
CO emissions associated with the	
Timeframe	10 to 20 years
Required implementation	Define a program of activities for the assessment of the viability of
	using alternative fuels in the navigation sector.
	Develop plan for implementing the use of biofuels in navigation
	based on the results of the assessment of the viability. Modification of legislation to include the roadmap for the use of
	alternative fuels in the navigation sector.
Mitigation Potential	 Reduction in the amount of fossil fuels require for the
Whitgation i otentiai	movement of ferries and marine public transport
Relevant agencies	- MOWT, MEEI, MPD
Barriers	- Resistance to uptake of technology in private settings
Barriers	 Long term implementation is dependent on legislative
	change and implementation (Long term)
Advantages/opportunities/Co-	- More efficient marine navigation systems
benefits	- Tore enteren marine na Gatton Systems
Synergies and/or trade-off	- Efficiency improvements onboard ships
	Fechnology (ICT) for integration and networking of land transport
	for intelligent traffic management systems
	avoid the need to travel, red light coordination and traffic management
	rease traffic coordination. Electric transponders or license plate system
or similar technology.	
Timeframe	5-10 years

Trinidad and Tobago – Technology Needs Assessment – Identification and Prioritization of Technologies for Mitigation

Required implementation	 Installation of relevant hardware at street lights and stop signals for the monitoring and coordination of traffic Develop relevant policies and legislation Setting up traffic management branch software and capacity building
Mitigation Potential	 Reduction in carbon emissions associated with high traffic routes, in Trinidad and Tobago the capital city centre is the no. 1 transport location due to the high concentration of businesses and offices
Relevant agencies	- MOWT, MPD
Barriers	 Lack of legislative and policy framework High cost of infrastructure and training
Advantages/opportunities/Co- benefits	 Opportunities for decentralisation of government agencies from the capital city and innovative work arrangements to reduce traffic/emissions Correspondingly reducing the need/pressure for increased road capacity and reducing emission levels, energy use and other environmental impacts More reliable public transport system Job Creation
Synergies and/or trade-off	- Better coordination of services to respond to accidents and emergencies

Vehicle emissions monitoring systems. Soft technologies required for implementation of vehicle emissions standards

Vehicle emissions monitoring systems. Establish vehicle registration fees and taxes to control vehicle	
emissions and promote efficient vehicles with lower fossil fuel consumption	
Timeframe	5-10 years
Required implementation	- Legislative and policy framework
	- Build capacity in vehicle registration and licensing
	authorities, including training and software installation
Mitigation Potential	- Reduction in carbon emissions associated with older less
-	well-maintained vehicles
Relevant agencies	MOWT, MPD
Barriers	- Lack of legislative and policy framework
	- High cost of infrastructure and training
	- Enforcement, lack of incentives
Advantages/opportunities/Co-	- Opportunities for the implementation of EV and HEV
benefits	- Systematic approach to vehicle registration and ongoing
	vehicle monitoring after registration
	- More reliable public transport system
	- Job Creation
Synergies and/or trade-off	- Minimum safety operating requirements for on road vehicles
Reference NDC IP 2020	

Reference NDC, IP 2020

9. Annex II List of stakeholders consulted for Mitigation TNA

- 1. Atlantic LNG
- 2. BP Trinidad and Tobago
- 3. Desalination Company of Trinidad and Tobago (DESALCOTT), Limited
- 4. Environmental Management Authority (EMA)
- 5. Factor Ideas Integral Services
- 6. General Electric
- 7. Heritage Petroleum
- 8. Institute of Marine Affairs (IMA)
- 9. Inter-American Institute for Cooperation on Agriculture (IICA)
- 10. Mayaro/Rio Claro Regional Corporation
- 11. Methanex Trinidad Limited
- 12. Ministry of Agriculture, Land and Fisheries
- 13. Ministry of Education
- 14. Ministry of Energy and Energy Industries
- 15. Ministry of Health
- 16. Ministry of Planning and Development
- 17. Ministry of Public Utilities
- 18. Ministry of Rural Development and Local Government
- 19. Ministry of Tourism
- 20. Ministry of Works and Transport
- 21. National Infrastructure Development Company (NIDCO)
- 22. Nucor Corporation/Nu-Iron Unlimited
- 23. Office of Disaster Preparedness and Management
- 24. Office of Prime Minister, Government of Trinidad and Tobago
- 25. Port of Spain City Corporation
- 26. Point Lisas Nitrogen Limited
- 27. Princess Town Regional Corporation
- 28. PROMAN//Methanol Holdings Trinidad Limited (MHTL)
- 29. Public Transport Service Company (PTSC)
- 30. Shell Trinidad and Tobago Limited
- 31. South West Regional Health Authority (SWRHA)
- 32. Trinidad and Tobago Civil Aviation Authority
- 33. Trinidad and Tobago Solid Waste Management Company (SWMCOL)
- 34. Trinidad Cement Limited, TCL Group
- 35. The Tobago House of Assembly (THA)
- 36. The University of the West Indies
- 37. Trinidad and Tobago Airport Authority
- 38. Trinidad Generation Unlimited (TGU)
- 39. University of Trinidad and Tobago (UTT)
- 40. Water and Sewerage Authority (WASA)
- 41. Yara Trinidad Limited