

THE KINGDOM OF SWAZILAND

BARRIER ANALYSIS AND ENABLING FRAMEWORK, Adaptation

REPORT II OF TECHNOLOGY NEEDS ASSESSMENT

August 2017

Barrier Analysis and Enabling Framework Report II of Technology Needs Assessment The Kingdom of Swaziland

This publication is an output of the Technology Needs Assessment project, funded by the Global Environment Facility (GEF) and implemented by the United Nations Environment Programme (UNEP) and the UNEP DTU Partnership (UDP) in collaboration with the Regional Centre Energy Research Centre, University of Cape Town. The views expressed in this publication are those of the authors and do not necessarily reflect the views of UNEP DTU Partnership, UNEP. We regret any errors or omissions that may have been unwittingly made. This publication may be reproduced in whole or in part and in any form for educational or non-profit services without special permission from the copyright holder, provided acknowledgement of the source is made. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the UNEP DTU Partnership.

Contents

Executive Summary x		
1. C	hapter 1 Introduction	1
2. C	hapter 2 Water Sector	7
2.1	Integrated River Basin Management (IRBM)	9
2.1.1	General description of Integrated River Basin Management (IRBM)	9
2.1.2	Economic analysis	. 11
2.1.3	Preliminary targets for technology transfer and diffusion	. 11
2.1.4	Identification of barriers for Integrated River Basin Management (IRBM)	. 12
2.1.4.1	Economic and financial barriers	. 12
2.1.4.2	2 Non-Financial barriers	. 13
2.1.5	Identified measures for Integrated River Basin Management (IRBM)	. 14
2.1.5.1	Economic and financial measures	. 14
2.1.5.2	2 Non-financial measures	. 15
2.1.6	Enabling framework for Integrated River Basin Management (IRBM)	. 15
2.2	Wetland Protection and Restoration	. 18
2.2.1	General description of Wetland Protection and Restoration	. 18
2.2.2	Economic analysis	. 19
2.2.3	Preliminary targets for technology transfer and diffusion	. 21
2.2.4	Identification of barriers for Wetland Restoration and Protection	. 21
2.2.4.1	Economic and financial barriers	. 21
2.2.4.2	2 Non-financial barriers	. 22
2.2.5	Identified measures	. 23
2.2.5.1	Economic and financial measures	. 23
2.2.5.2	2 Non-financial measures	. 23
2.2.6	Enabling framework for Wetlands Restoration and Protection	. 23
2.3	Rooftop Rain Water Harvesting	. 25
2.3.1	General description of Rooftop Rain Water Harvesting	. 25
2.3.2	Preliminary targets for technology transfer and diffusion	. 29
2.3.3	Identification of barriers for Rain Water Harvesting	. 29
2.3.3.1	Economic and financial barriers	. 31
2.3.3.2	2 Non-financial barriers	. 31
2.3.4	Identified measures	. 33
2.3.4.1	Economic and financial measures	. 33

2.3.4.2	2 Non-financial measures	33
2.3.5	Enabling framework for RWH systems	34
2.3.6	Linkages between barriers and complementarities between technologies	36
3. C	hapter 3 Agriculture Sector	37
3.1	Livestock and Poultry Selective Breeding	40
3.1.1	General description of Livestock and Poultry Selective Breeding	40
3.1.2	Cost Benefit Analysis	43
3.1.3	Preliminary targets for technology transfer and diffusion	43
3.1.4	Identification of barriers for Livestock and Poultry Selective Breeding	44
3.1.4.1	Economic and Financial Barriers	44
3.1.4.2	2 Non-Financial Barriers	45
3.1.5	Identified Measures for Livestock and Poultry Selective Breeding	45
3.1.6	Enabling Framework for Livestock and Poultry Selective Breeding	45
3.2	Conservation Agriculture	47
3.2.1	General description of Conservation Agriculture	47
3.2.2	Economic Analysis	48
3.2.3	Preliminary targets for technology transfer and diffusion	49
3.2.4	Identification of barriers for Conservation Agriculture	49
3.2.4.1	Economic and Financial Barriers	49
3.2.4.2	2 Non-Financial Barriers	49
3.2.5	Identified Measures for Conservation Agriculture	50
3.2.6	Enabling Framework for Conservation Agriculture	50
3.3	Micro and Drip Irrigation	52
3.3.1	General description of Micro and Drip Irrigation	52
3.3.2	Economic analysis	55
3.3.3	Preliminary targets for technology transfer and diffusion	56
3.3.4	Identification of barriers for Micro and Drip Irrigation	57
3.3.4.1	Economic and financial barriers	57
3.3.4.2	2 Non-financial barriers	59
3.3.5	Identified Measures for Micro and Drip Irrigation	60
3.3.5.1	Economic and financial measures	60
3.3.5.2	2 Non-financial measures	61
3.3.6	Enabling framework for Micro and Drip Irrigation	61
3.3.6.1	Linkages between barriers and complementarities between technologies	64

4. Chapter 4 Forests and Biodiversity Sector	65	
4.1 Agroforestry	66	
4.1.1 General description of Agroforestry	66	
4.1.2 Cost Benefit Analysis	68	
4.1.3 Preliminary targets for technology transfer and diffusion	69	
4.1.4 Identification of barriers for Agroforestry	70	
4.1.4.1 Economic and Financial Barriers	70	
4.1.4.2 Non-Financial Barriers	70	
4.1.5 Identified Measures for Agroforestry	71	
4.1.5.1 Enabling Framework for Agroforestry	71	
4.2 Conservation of Genetic Resources		
4.2.1 General description of Conservation of Genetic Resources		
4.2.2 Economic Analysis		
4.2.3 Preliminary targets for technology transfer and diffusion		
4.2.4 Identification of barriers for Conservation of Genetic Resources		
4.2.4.1 Economic and Financial Barriers		
4.2.4.2 Non-Financial Barriers		
4.2.5 Identified Measures for Conservation of Genetic Resources		
4.2.6 Enabling Framework for Conservation of Genetic Resources		
4.3 Invasive Alien Species Management	80	
4.3.1 General description of Invasive Alien Species Management	80	
4.3.1 Cost benefit Analysis	83	
4.3.2 Preliminary targets for technology transfer and diffusion	83	
4.3.3 Identification of barriers for Invasive Alien Species Management	84	
4.3.3.1 Economic and financial barriers	85	
4.3.3.2 Non-financial barriers	85	
4.3.3.3 Identified measures	86	
4.3.3.4 Economic and Financial measures	86	
4.3.3.5 Non-financial measures	86	
4.3.3.6 Enabling framework for IASPs management	87	
4.3.3.7 Linkages between barriers and complementarities between technologies	88	
5. Chapter : SWOT Analysis of Measures	89	
6. Chapter 6 Linkages between barriers and complementarities between technologies 103		
7. List of References	104	

List of Tables

Table 1 Progression of the TNA project with regard to stakeholder consultation and prioritisation of technologies	4
Table 2 Additional stakeholder consultation undertook for BAEF	6
Table 3 Economic and Financial Barriers for Integrated River Basin Management	
Table 4 Non- Financial Barriers for Integrated River Basin Management	
Table 5 Enabling framework for Integrated River Basin Management	
Table 6 Inventory of wetlands in Swaziland	
Table 7 Barriers identified by the stakeholders for Wetlands Restoration and Protection	
Table 8 Non-financial barriers for Wetland Restoration and Protection	22
Table 9 Enabling framework for up scaling Rain Water Harvesting technology in Swaziland	
Table 10Rainfall in ecological zones of Swaziland	25
Table 11 Cost benefit analysis for RWH	
Table 12 Barriers identified by the stakeholders for Rooftop Rainwater Harvesting and its related costs	
Table 13 Non-financial barriers for Rain Water Harvesting technology	32
Table 14 Enabling framework for up scaling Rain Water Harvesting technology in Swaziland	34
Table 15 Enabling framework for Livestock and Poultry Selective Breeding	45
Table 16 Economic and Financial Barriers for Conservation Agriculture	49
Table 17 Non-Financial barriers to adoption of Conservation Agriculture	50
Table 18 Enabling Framework for Conservation Agriculture	50
Table 19 Cost calculation for micro irrigation kit	55
Table 20 List of economic and financial barriers, barriers, costs for individual and effects of the barriers	58
Table 21 Non-Financial Measures for improving use of micro and drip irrigation in Swaziland	59
Table 22 Enabling framework for micro and drip irrigation in Swaziland	61
Table 23 Preliminary Targets for Technology Transfer and Diffusion	69
Table 24 Non-Financial Barriers for Agroforestry	
Table 25 Enabling Framework for Agroforestry	
Table 26 Economic and Financial Barriers for Conservation of Genetic Resources	
Table 27 Non-Financial Barriers for Conservation of Genetic Resources	
Table 28 Enabling Framework for Conservation of Genetic Resources	
Table 29 List of economic and financial barriers for IASPs management, costs for the country and effects of the	barriers
Table 204 participant processing the problem tree for IASDs on behalf of his group at the DASS workshop	85
Tuble SUA purticipant presenting the problem tree for IASPS on benaif of his group at the BAEF WORKShop	58
Tuble 32 Enchling framework for IASDs management in Sugalized	
Tuble 32 Enubling framework for IASP's management in Swazilana	/ ۲
Table 33 SWOT analysis of measures	
Table 34 Overall strategy for overcoming barriers	101

List of Figures

Figure 1 Participants at initial meeting for Barrier Analysis and Enabling Framework workshop at Piggs Peak, Swaziland
in August 2016
Figure 2 Second workshop on BAEF phase held in Piggs Peak between in March 2017
Figure 3 Important River Basins of Swaziland
Figure 4 Newspaper article on wetlands protection project
Figure 5 Rainwater harvesting at a school near Mbabane in Swaziland
Figure 6 Participants at the BAEF workshop preparing problem and solution trees
Figure 7 Two young smallholder farmers using drip irrigation technology in Swaziland
Figure 8 Participants at the stakeholder workshop brainstorming on barriers for micro and drip irrigation technologies in
Swaziland
Figure 9 Participants developing problem and solution trees at the BAEF workshop
Figure 10 Total Forest Area Affected by Woody Invasive Species in 2010

Acronyms

ACAT	Africa Cooperative Action Trust
BAEF	Barrier Analysis and Enabling Framework
CA	Conservation Agriculture
CANGO	Coordinating Assembly of NGOs
CASP	Comprehensive Agriculture Sector Policy
CBO	Community Based Organization
CBD	Convention on Biological Diversity
CITES	Convention in Trade of Endangered Species
COSPE	Cooperation for the Development of Emerging Countries
CTCN	Climate Technology Centre and Network
DOM	Department of Meteorology
DVLS	Department of Veterinary and Livestock Services
EST	Environmentally Sound Technologies
FAO	Food and Agricultural Organization
GEF	Global Environment Facility
GHG	Green House Gases
GV	Government
IASP	Invasive Alien Species
IDE-JETRO	Institute of Developing Economies – Japan External Trade Organization
IEC	Information Education and Communication
IFAD	International Fund for Agriculture Development
INDC	Intended Nationally Determined Contributions
IRBM	Integrated River Basin Management
IWRM	Integrated Water Resources Management
KDDP	Komati Downstream Development Project
KOBWA	Komati Basin Water Authority
LDP	Livestock Development Policy
LUSIP	Lower Usuthu Smallholder Irrigation Project
MA	Millennium Assessment
MEA	Millennium Ecosystem Assessment
MOAC	Ministry of Agriculture and Cooperatives
MTEA	Ministry of Tourism and Environmental Affairs
NCC	National Curriculum Centre
NDS	National Development Strategy
NFSP	National Food Security Policy
NCP	Neighbourhood Care Points
NGO	Non-Governmental Organization
NWA	National Water Authority
PA	Protected Areas
PPP	Public Private Partnership
PVC	Polyvinyl Chloride
RBA	River Basin Authority
RWH	Rain Water Harvesting

RWSB	Rural Water Supply Branch
SADC	Southern African Development Community
SCOT	Swaziland College of Technology
SCCF	Special Climate Change Fund
SEA	Swaziland Environment Authority
SKPE	Swaziland Komati Development Project
SNL	Swazi National Land
SNPAS	Strengthening the National Protected Areas Systems of Swaziland
SNTC	Swaziland National Trust Commission
SPGRC	Swaziland National Plant Genetic Resource Centre
SWADE	Swaziland Water and Agricultural Development Enterprise
SWASA	Swaziland Standards Authority
SWOT	Strengths Weaknesses Opportunities and Threats
TAP	Technology Action Plan
TDL	Title Deed Land
TNA	Technology Needs Assessment
TNC	Third National Communication
TPTC	Tripartite Permanent Technical Commission
UNCBD	United Nations Convention on Biological Diversity
UNCCD	United Nations Convention on Combating Desertification
UNDP	United Nations Development Programme
UNDP/GEF	United Nations Development Programme/ Global Environment Facility
UNEP-DTU	United Nations Environment Programme- Denmark Technical University
UNFCCC	United Nations Framework Convention on Climate Change
USAID	United States Agency for International Development
USD	United States Dollar
VAT	Value Added Tax
WASH	Water Sanitation and Hygiene
WRP	Wetlands Restoration and Protection
WWF	World Wildlife Fund

Executive Summary

Swaziland faces many capacity and technology constraints in addressing climate change challenges, which include low awareness, limited human resources, low technological capacity and inadequate financial resources for adaptation. To address this, the Ministry of Tourism and Environmental Affairs (MTEA), Department of Meteorology (DOM) spearheaded the Technology Needs Assessment (TNA) project, which identified and prioritised technologies for climate change adaptation. Support was received from the United National Environment Programme and Denmark Technical University partnership (UNEP DTU Partnership). The project began in May 2015 and undertook the sector selection, technology prioritisation, barrier analysis and enabling framework development. This report is about the Barrier Analysis and Enabling Framework (BAEF) phase where several stakeholder workshops and interviews were done to understand what barriers prevent implementation and up-scaling of technologies for climate change adaptation in Swaziland.

The sectors covered are: (1) Water, (2) Agriculture, and (3) Forests and Biodiversity. For each sector, the report covers the following:

- Identifying preliminary target of technology transfer and diffusion of each of the adaptation technology;
- Identifying and prioritizing the barriers using barrier analysis tools including: stakeholder consultations in workshops, bilateral meetings, review of documents, problem and solution tree method and market mapping where possible;
- Investigating, assessing and categorising the possible measures to address the barriers for the transfer and diffusion of each technology and eventually; and
- Identifying the enabling environment and support services to enhance the uptake of the technologies.

Technology	Major barriers	Measures to overcome barriers
Water Sector		
1. Integrated	Financial barriers include inability to get	Measures include development of
River Basin	concessional loans due to Swaziland's	proposals to raise funds for River Basin
Management	middle income status and inadequate	Authority activities and establishing a
(IRBM)	domestic funds to implement IRBM	"Funds Coordination Platform" in
	activities. Institutional barriers include poor	collaboration with relevant stakeholders
	capacity of River Basin Authorities to	for creating synergies in usage of funds
	effectively implement the Water Act and	related to IRBM activities. Other measures
	water management strategies, weak	included building capacity of RBAs,
	coordination of IRBM related activities	creating awareness amongst stakeholders
	under various other related programmes and	about IRBM and creating a participatory
	conventions that Swaziland is signatory to.	forum which includes traditional
	Political barriers inlude conflicts in water	authorities to provide for participatory
	resources management between formal	decision making at riber basins.
	authorities and traditional authorities. Poor	
	awareness on IRBM	

The major barriers and measures for the three sectors under the TNA project are given in table below.

2. Wetland	Financial barriers include inadequate funds	Setting up the Funds Coordination
Restoration and	for WRP activities and poor coordination of	Mechanism mentioned under IRBM will
Protection	funds in programmes where wetlands are	help create synergies in activities of WRP
(WRP)	included. Low level of awareness about the	too. Developing proposal for funding WRP
	importance of wetlands and the mindset of	activities in selected wetalnds is another
	extracting benefits from wetlands looking at	measure. Creating awareness of
	the short term rather than long tern	importance of wetlands through
	sustainability is another barrier. Inadequate	community level meetings and site visits
	monitoring of wetland health and unclear	and setting up a wetlands monitoring
	roles and responsibilities of agencies whose	system are other measures proposed.
	works overlap with WRP were institutional	
	barriers.	
3. Rooftop Rain	Barriers include lack of a legal instrument	Subsidizing RWH tanks by 50% of its cost
Water	that makes RWH compulsory and lack of	to selected number of households, creating
Harvesting	standards for construction of RWH	awareness of RWH systems through
(RWH)	structures. There is low awareness about the	including this technology under the Water
	technology, inadequate capacity for	Sanitation and Hygiene (WASH) Forum
	installation and some social and behavioural	and promoting the technology in media as
	barrier were also identified which includes	well as setting up demonstration sites were
	possibility of theft and vandalism of the	measures proposed.
	RWH systems.	
Agriculture		
1. Livestock	The main economic barrier for poultry	Measures included creating awareness
and Poultry	farmers is the cost of transportation to reach	about the technology through training of
Selective	markets. Low awareness of selective	farmers, conducting reserach on markets
Breeding	breeding technology and the mind-set of	and value chain as well as enhancing
	farmers to consider lievstock as a store of	capacity of the extension services through
	wealth rather than a business were some	providing training and filling vacancies.
	barriers. Another barrier was inadequate	
	capacity in extension services in order to	
	reach larger numbers of farmers.	
2. Conservation	The economic barrier was the low level of	Measures include providing subsidy for
Agriculture	attordability of mechanised planters.	mechanised planters, training extension
	Inadequate awareness of this technology and	workers, setting up demsotration sites and
	inadequate capacity of extension staff to	creating awareness of conservation
	promote this technology remains barriers.	agriculture.
3. Micro and	The high capital cost of micro and drip	Subsidising micro and drip irrigation kits
Drip irrigation	irrigation kits were a barrier to its uptake.	for farmers would help address the barrier
	Availability of affordable finance was also a	of affordability of this equipment/
	barrier as interest rates for borrowing is high.	Providing training to farmers assosciations
	inadequate skilled personnel for micro and	and setting up practical demostration sites
	drip kits installation was another barrier	would neip to promote this technology.
	which also drove up the cost of use of this	building capacity for relevant Government
	equipment. Legislative barrier was that of	star for and creating awareness amongst
	lack of legal instruments that enforce	

	efficient use of water for irrigation.	farmers would help in up-scaling this
	Furthermore, there is a technical barrier that	technology.
	this technology cannot be used for all types	
	of crops, for example rice which needs flood	
	irrigation.	
Forestry and bio	odiversity	
1. Agroforestry	Low awareness about the benefits of	Training of farmers by providing
	investing in agroforestry and limited access	knowledge and giving them seedlings was
	to agroforestry inputs was a barrier for some,	proposed as measure. Furthermore,
	while low capacity of extension workers to	involving the agriculture extension officers
	promote this technology was another barrier.	and NGOs in the training programme
		would enhance promotion of this
		technology in a sustainable manner.
2. Conservation	Inadequate funds for establishment of a	Establishing a botanical garden and field
of Genetic	national botanical garden and field gene	gene bank is a measure suggested. Creating
Resources	bank was a barrier. There is low level of	awareness amongst farmers to collect seeds
	awareness of the need for conservation of	and multiply them through field days at the
	genetic resources and weak capacity in plant	botanical garden and field gene bank and
	genetics resources management.	providing training to officers working on
		plant genetics resources as well as
		providing scholarships for further studies
		in the area to relevant government officers
		are measures needed.
3. Invasive	Inadequate funding was the major barrier for	Measures include improving awareness
Alien Species	this technology, as funds would be required	about invasive alien species and improving
Management	for chemicals for combat, cost of training	skills in its management. Revision of the
	workers, provision of protective clothing and	strategy for alien invasive species
	logistics which is a large sum of funds. Non-	management and impriving political will to
	financial barriers included low awareness	implement the streategy through producing
	regarding alien species and need for revision	a policy brief and development of
	of the invasive alien species management	proposals to raise funds to implement
	strategy.	activities of invasive alien species
		management strategy were other
		measures .

The summary of the enabling framework developed by stakeholders for all the three sectors are summarised in table below.

Category	Measures	Outcome
National macro	Subsidy for technologies RWH system	Affordability of technology improves
economic	and, drip and micro irrigation systems	thereby its use is up-scaled, leading to better
conditions		adaptive capacity
	Setting up a Funds Coordination	Improved synergies in usage of funds and
	Mechanism for accruing synergies in	therefore more work is done using existing
		funds

	usage of funds for IRBM and WRP	
	activities.	
	Creating a participatory forum for IRBM	Reduced conflicts and improved
	participatory decision making in river	participation as well as ownership amongst
	basins	stakeholders, leading to better management
		of river basins
	Developing a policy brief to enhance	Political will can help with support for
	political will for invasive alien species	allocation of funds for management of
	management	invasive species management, leading
		benefits for all sectors affected (water, land,
		agriculture, biodiversity)
Human,	Building capacity of River Basin	Enhanced river basin management leading to
organizational	Authorities to implement IRBM	healthier ecosystems in river basins
and	Capacity building for relevant officers	Effective implementation of the Water Act
institutional	responsible to implement the National	leading to healthier water resources
capacity	Water Act	
	Awareness raising of all nine technologies	Up-scaling of the technologies will be
	chosen under TNA through setting up	improved when awareness is enhanced,
	demonstration sites, providing	leading to better adaptation
	information, education and	
	communication materials, media reports	
	and road shows	
	Filling vacancies, capacity building and	River Basin Authorities will be able to carry
	training of officers in River Basin	out their activities in effective manner,
	Authorities	thereby healthier ecosystems in river basins
	Include rain water harvesting into national	Possibilities for integration of rain water
	Water Sanitation and Hygiene (WASH)	harvesting into WASH projects, thereby up-
	forum	scaling harvesting
	Enhance capacity of extension services for	Farmers will gain from better information
	agriculture	and timely support for decision making and
		yields improve
	Providing scholarships for higher	Skilled human resources aid in making better
	education to relevant staff on plant	decisions for conservation of genetic
	genetics	diversity, leading to enhanced biodiversity
		gains
Research and	Research on livestock markets, value chain	Gaps in markets addressed and farmers fetch
technological	and gaps identified.	better prices for livestock and poultry and
capacity		consumers have better choice
	Establishment of a National Botanical	This will serve as a demonstration site where
	Garden and Field Gene Bank	farmers can be trained
	Capacity building and training for	Lower cost for installation as skileld
	installers of RWH systems, drip and micro	personnel to do the work will be available,
	irrigation systems,	leading to enhanced adoption og technology

	Setting up demonstration sites for RWH,	Communities and farmers can undertake	
	Conservation Agriculture, Drip and Micro	practical training and improve knowledge	
	Irrigation and Agroforestry technologies	thereby helping up-scale these technologies,	
		leading to better agricultural outcomes	
Social and	Awareness raising regarding all the	Better informed communities can up-scale	
cultural	technologies and debunking myths about use and diffusion of the technologies, helpin		
	the technologies	them adapt better to climate change	

Report II

Barrier Analysis and Enabling Framework Report

1. Chapter 1 Introduction

The Kingdom of Swaziland is a mountainous country of 17,364sqkm area blessed with scenic landscapes, water resources and arable as well as grazing lands, which support agriculture, tourism and industry, which are some of the main economic activities. Swaziland has experienced the impacts of climate change, which has affected many of its sectors (Government of Swaziland, 2016). To respond to these challenges, Swaziland has taken several steps including development of policies and regulations, establishing organizations and committees to coordinate efforts on climate change as well as implementing projects and programmes on climate change adaptation and mitigation, which are geared towards achieving objectives of the United Nations Framework Convention on Climate Change (UNFCCC). The Ministry of Tourism and Environmental Affairs (MTEA), Department of Meteorology (DOM) spearheaded the Technology Needs Assessment (TNA) project with the support from the United National Environment Programme and Denmark Technical University (UNEP DTU) partnership.

The purpose of the TNA project was to assist Swaziland to identify and prioritize technolog y needs, which formed the basis for a portfolio of environmentally sound technology (EST) projects and programmes to facilitate the transfer of, and access to ESTs and know-how in the implementation of Article 4.5 of the UNFCCC Convention (UNFCCC, 2015). Hence TNAs are central to the work of Parties to the Convention on technology transfer and present an opportunity to track an evolving need for new equipment, techniques, practical knowledge and skills, which are necessary to mitigate Green House Gases (GHG) emissions and/or reduce the vulnerability of sectors and livelihoods to the adverse impacts of climate change.

The main objectives of the project are:

1. To identify and prioritize through country-driven participatory processes, technologies that can contribute to mitigation and adaptation goals of the participant countries, while meeting their national sustainable development goals and priorities (TNA);

2. To identify barriers hindering the acquisition, deployment, and diffusion of prioritized technologies; and

3. To develop Technology Action Plans (TAP) specifying activities and enabling frameworks to overcome the barriers and facilitate the transfer, adoption, and diffusion of selected technologies in the participant countries.

This report addresses the second objective of TNA, which is identifying barriers and developed enabling frameworks for technologies. The TNA process in Swaziland began with extensive stakeholder engagement. The sector prioritization process involved brainstorming on country development priorities and discussion of sectors which are most useful for achieving them. Swaziland prioritised the sectors Water, Agriculture and, Forests and Biodiversity for adaptation. Stakeholders prioritised the technology of Integrated River Basin Management (IRBM), Rooftop Rainwater Harvesting (RWH) and Wetlands Restoration and Protection (WRP) under the water sector. For the agriculture sector, Livestock and Poultry Selective Breeding, Conservation Agriculture and Micro and Drip Irrigation technology were retained for Barrier Analysis and Enabling Framework (BAEF) and Technology Action Plan (TAP) phase. For the forests and biodiversity sector, Agroforestry, Conservation of Genetic Resources and Management of Alien Invasive Species were prioritised.

Swaziland has taken steps to ensure that the TNA process is aligned to other important national processes. The TNA prioritised technologies have been included into the Intended Nationally Determined Contributions (INDC). The Third National Communication (TNC) of Swaziland includes a chapter on the TNA process. Additionally, an eco-tourism project titled the Eco-Lubombo Transfrontier Conservation Programme have included TNA technologies into their project plans. Aligning INDC, TNC and the Eco-Lubombo project with TNA prioritised technologies is considered an accomplishment for Swaziland as efforts will be streamlined for managing climate change in the country. Furthermore, as an outcome of the TNA project, Swaziland received funds through Climate Technology Centre and Network (CTCN) for training civil society on climate change and forming a national task team which has both state and non-state actors and is working towards enhancing adaptation and mitigation activities.

This report provides a narrative of the barrier analysis and corresponding enabling framework to facilitate the widespread diffusion of adaptation technologies identified in Swaziland in the TNA project. Discussions of the barriers identified by stakeholders for each of the shortlisted technologies in adaptation are provided. Furthermore, corresponding solutions to these barriers, in the form of policy recommendations and practical actions to be taken are also provided in this report, derived from information collected at the stakeholder workshop in August 2016. Enabling Frameworks for prioritised technologies were developed at the workshop in March 2017.

Figure 1 Participants at initial meeting for Barrier Analysis and Enabling Framework workshop at Piggs Peak, Swaziland in August 2016

At the preliminary BAEF workshop in August 2016, stakeholders undertook exercises in identifying problems and solutions for implementing the prioritised technologies. Problem tree and solution tree methods were used.

Figure 2 Second workshop on BAEF phase held in Piggs Peak between in March 2017

A second workshop was held between 29-31 March 2017 at Piggs Peak where stakeholders came together to discuss at a more detailed level the enabling frameworks for chosen technologies. This was an opportunity for the consultant to present problem trees and solution trees developed in the first workshop and discuss them with the stakeholders, who then worked in groups to come up with enabling frameworks. Market maps were developed for some technologies. The stakeholders also shared several documents and useful information which contributed to this report.

To summarize, the following stakeholder consultations were held as part of TNA project.

Date	Stakeholder	Activities undertaken	Number of
	engagement		participants
13 June 2015	Inception workshop	Stakeholders prioritised sectors for TNA. The ten sectors that were presented to stakeholders were	22
	and Sector	deliberated and discussed. Then stakeholders choose three sectors and they also guided consultants	
	prioritisation	on which technologies to focus on. After which, factsheets of technologies were sent via e-mail to	
	workshop	participants. Sectors chosen for adaptation were:	
		1. Water	
		. Agriculture	
		3. Forestry and Biodiversity	
20- 21 August	Technology	Stakeholders prioritised technologies during the technology prioritization workshop. Multi Criteria	43
2015	prioritisation	Analysis (MCA) tool was used and following technologies were prioritised:	
	workshop	Water Sector:	
		1. Integrated River Basin Management	
		2. Artificial groundwater recharge	
		3. Wetland restoration	
		Agriculture Sector:	
		1. Livestock and Poultry selective breeding	
		2. Conservation Agriculture	
		3. Crop Diversification	
		Forests and Biodiversity Sector:	
		1. Afforestation	
		2. Conservation of genetic resources	
		3. Invasive Alien Species Management	
9 April 2016	TNA Validation	Changes were made to the prioritised technologies at this workshop. Artificial ground water	63
	workshop	recharge was considered not a "mature" technology for Swaziland and hence replaced with	
		Rooftop Rainwater Harvesting. Crop diversification was considered included under Conservation	
		Agriculture and hence Micro and Drip Irrigation was included, particularly considering the recent	
		droughts experienced by the country. Afforestation was replaced with agroforestry to benefit	
		farmer's livelihoods and to contribute woody cover within farms and not just afforestation areas.	

Table 1 Progression of the TNA project with regard to stakeholder consultation and prioritisation of technologies

		Water Sector:	
		1. Integrated River Basin Management	
		2. Wetland protection and restoration	
		3. Rooftop Rain water harvesting	
		Agriculture Sector:	
		1. Livestock and Poultry selective breeding	
		2. Conservation Agriculture	
		3. Micro and Drip irrigation	
		Forests and Biodiversity Sector:	
		1. Agroforestry	
		2. Conservation of genetic resources	
		3. Invasive Alien Species Management	
31 August to 2	BAEF inception	The BAEF phase was introduced to participants including problem and solution tree methods.	36
September	workshop	Stakeholders chose one technology per sector for detailed analysis.	
2016			
29-31 March	BAEF workshop	Barriers and enabling frameworks for the chosen technologies were identified	46
2017			participants
July/August	Stakeholder	A number of national experts were interviewed by the consultant to gather more information to	7 experts
2017	consultations/	improve the report. The BAEF report was revised further.	interviewed,
	Interviews		literature
			review and
			further
			analysis
			done.

Table 2 Additional stakeholde	r consultation	undertook for	BAEF
-------------------------------	----------------	---------------	------

Date	of	Name	Institution	Areas of expertise and Inputs provided
interview				
3	May	Jabulani	Swaziland National	Expertise in agriculture and micro finance
2017		Tsabedze	Agricultural Union	and head of farmers union.
10	July	Prince M.	Swaziland Water and	Has undertaken projects that's cuts across
2017		Mngoma	Agricultural	all three sectors of water, agriculture,
			Development Enterprise	forests and biodiversity. Provided in depth
			(SWADE)	information particularly on conservation
				agriculture.
11	July	Mvezi	Peak Timbers	Expertise in Forestry and Biodiversity.
2017		Phindumbutfo		Provided Grassland Assessment and Stream
		Dlamini		Assessment Reports, which provided
				insight into landscape management and
				water quality issues.
18	July	Prof. Abshalom	University of Swaziland	Provided information for all three sectors,
2017		Manyatsi		but further in depth information for the
				agriculture sector barriers.
26	July	Richard	COSPE	Expertise in agriculture projects.
2017		Masimula		
8 A	ugust	Titus Dlamini	Director, Ecotone	Provided information on all three sectors
2017			Africa.	and in particular more details on
			Former Chief Executive	management of invasive alien species.
			Officer of Swaziland	
			National Trust	
			Commission	
Augus	st	Mbongeni	Environment Fund	Provided information via e-mail on wetland
2017		Hlophe		rehabilitation and protection project.

A chapter on Strengths Weaknesses Opportunities and Threats (SWOT) analysis of measures and another chapter on linkages between barriers is included in this report. The three sectors are discussed in details with barriers identified for all nine technologies (three per sector) and enabling frameworks were developed.

2. Chapter: Water Sector

Swaziland is blessed with water resources, comprising of five major river systems comprising Lomati, Komati, Mbuluzi, Usuthu and Ngwavuma (or Ngwempisi) rivers (Figure 3). The surface water resources of the country are estimated at 4.5 km³/year with 42% originating from South Africa (Manyatsi and Brown, 2009). Swaziland has eleven dams which are important for water supply and irrigation in the country. Water is a key driver for economic growth in Swaziland, as agriculture and tourism sector depends highly on this resource. Stakeholders recognized this and prioritized the water sector for the TNA project. The drought experienced in 2015-2016 was a key motivation for stakeholders to prioritize water saving and water efficient technologies. The technologies retained during the BAEF phase for water sector were:

- 1) Integrated River Basin Management (IRBM);
- 2) Wetland Restoration and Protection (WRP) and
- 3) Rooftop Rain Water Harvesting (RWH).

The BAEF was a stakeholder driven process and includes inputs from stakeholders via workshops and interviews, but also contains recommendations for measures which were extracted from the following national documents. Given below are explanations of how the national documents provide motivation for adaptation measures in the water sector:

• Alignment with national priorities

Adaptation in the water sector is in alignment with national priorities and has impetus from legislations as well as published Government documents.

• National Water Policy 2009

The need for investment in the water sector has been emphasized in the National Water Policy (2009). "Swaziland shall endeavour to provide adequate financial resources for national projects for water resources development and management." Strategies listed in the policy include using a participatory approach, providing adequate funds to finance development of water infrastructure as well as capacity building, institutional development, research and technology development.

• Intended Nationally Determined Contributions (INDC) 2016

The INDC (currently known as Nationally Determined Contributions or NDC) prioritized adaptation technologies including RWH, WRP and IRBM across all sectors.

• Third National Communication to UNFCCC 2016

The Third National Communication to UNFCCC also talks about the need for water saving technologies and improving adaptation in the sector.

• Global Water Partnership (GWP) Integrated Water Resources Management Report (Manyatsi and Brown, 2009)

The report called for measures including capacity building, training and retaining of staff of Department of Water Affairs, strengthening of institutions offering water related courses, innovative mechanisms of

fundraising, improved ways of disseminating information, and development and finalizing of policies and regulations.

• National Development Strategy and Vision 2022

The National Development Strategy and Vision 2022 calls for efficient use of water resources, review of regulations, institutional strengthening, promoting water harvesting, improving delivery and improve participation in water resources management.

Swaziland's major rivers are transboundary and shared with South Africa and Mozambique (see figure below).

Figure 3 Important River Basins of Swaziland

Source: Kowalkowski et al. (2007)

2.1 Integrated River Basin Management (IRBM)

2.1.1 General description of Integrated River Basin Management (IRBM)

"Integrated River Basin Management (IRBM) is the process of coordinating conservation, management and development of water, land and related resources across sectors within a given river basin, in order to maximise the economic and social benefits derived from water resources in an equitable manner while preserving and, where necessary, restoring freshwater ecosystems" (GWP, 2000). IRBM rests on the principle that naturally functioning river basin ecosystems, including accompanying wetland and groundwater systems, are the source of freshwater. Therefore, management of river basins must include maintaining ecosystem functioning as a paramount goal. This "ecosystems approach" is the interdisciplinary technology which integrates all other management and technical methods for sustainable development in a river basin.

IRBM has many social, economic and environmental advantages. IRBM ensures that human and environmental needs are met in a sustainable manner, thus avoiding conflicts on access and use of water. It facilitates balanced, harmonious social and economic development plans. Furthermore, it protects the local environment, habitats and landscapes. This technology needs myriad skills for implementation, collection of various data, as well as strong institutional arrangements to make it a success. Swaziland does not have good reliable data which can help with making river basin management plans, there is limited coordination amongst organizations and communities, and there is need to strengthen the decentralization process in order to effectively adopt IRBM systems (IDE-JETRO, 2017).

Any programmes related to IRBM must take into consideration the transboundary soft laws. The Protocol on Shared Watercourses in the SADC Region, the Regional Water Policy (RWP), the Regional Water Strategy (RWS) and other shared watercourse agreements are to be used for guidance and strategic direction as it is binding to all Member States. According to the National Water Policy (2009) of Swaziland, there is need for raising awareness among the populace on the shared watercourse agreements, harmonising policies and improving cooperation in all shared watercourses agreements to which Swaziland is party, as a basis for cooperation in transboundary water resources management (Government of Swaziland, 2009).

The seven key elements to a successful IRBM initiative are, according to WWF (2017):

- 1. A long-term vision agreed by all stakeholders for the river basin;
- 2. Integration of policies, decisions and costs across sectors;
- 3. Strategic decision-making at the river basin level, with actions at local levels;
- 4. Taking advantage of opportunities working within a strategic framework;
- 5. Participatory approach where relevant stakeholders are involved in decision-making;

6. Sufficient investment by governments, the private sector, and civil society organisations in planning and participation processes; and

7. Good understanding of the river basin and the natural and socio-economic forces that influence it.

Mwendera et al. (2002) estimates Swaziland's surface water resources to be 4.45 billion m³/year with 58% originating within the country. It is imperative that the river basins are managed well in the wake of challenges faced by climate change. Since, for Swaziland, all river basins are shared with Mozambique and South Africa, all three countries have established commissions and committees to safeguard development of the international water bodies. These include the Joint Water Commission, the Komati Basin Water Authority and the Tripartite Commission. Swaziland has established the Komati River Basin Authority through the Tripartite Permanent Technical Committee (TPTC), a collaboration between South Africa, Mozambique and Swaziland. The cooperation on the joint management of the Komati Basin was initiated in 1992 with the signing of the Komati Accord between South Africa and Swaziland. The Accord was signed by Mozambique in 2002, making the Komati River Basin Authority one of the first river basin organizations in Southern Africa. This is to manage the water flow of the Komati River and Maputo River, specifically during times of flooding and drought. At the national level, the Water Act of 2003 established the National Water Authority (NWA) and also five river basin authorities (RBA) (Lomati, Komati, Mbuluzi, Usuthu and Ngwavuma) through which basin specific water management processes will evolve. RBAs works with basin stakeholders to manage water resources. Although the Act states that all water in the country is a national resource and users need to have permit for use of the water, however, for primary (subsistence) use, there is no need for a permit. The five river basin authorities will apportion the water for domestic, agriculture and environmental uses (Manyatsi and Brown, 2009).

During the TNA process, stakeholders raised concerns regarding some of the challenges faced by Swaziland with regard to IRBM. They mentioned slow implementation of the Water Act and water management strategies, weak institutional capacity, poor awareness leading to catchment degradation, pollution from agro-chemical run-off and climate change to be the challenges. They articulated need for capacity building, setting up relevant institutions, better technologies to control water leaks, and called for greater awareness on IRBM.

At the national level, a UNDP funded project "Adapting national and transboundary water resource management to manage the expected impacts of climate change" was implemented in Swaziland from 2011 to 2015. The project was funded by the Global Environment Facility (GEF) through the Special Climate Change Fund (SCCF). USD 7.5million was spent along with received co-financing and in-kind contributions from the Government of Swaziland and the Komati Basin Water Authority (KOBWA). This addressed the need for river basin management programmes to consider and plan for climate change impacts. Technologies such as rain water harvesting, sand dams, automated weather stations, drilling of boreholes, improving water and sanitation, crop diversification, promoting good land use practises and training of officers responsible for negotiations at transboundary authorities was done through this project (UNDP, 2017).

Thus, IRBM is a suite of hard and soft technologies and is best described as an interdisciplinary technology which integrates all other management and technical methods for sustainable development in a river basin. Its benefits include balancing social and economic benefits in an equitable manner, preventing/avoiding conflicts on the access and use of water and facilitating balanced, harmonious social and economic development plans. Its benefits to the environment include saving water, reducing water wastage,

conserving biodiversity and protecting the local environment, habitats and landscapes. Finally, IRBM contributes to adaptation by facilitating the conservation and efficient use of the available water resources to cope with climate change. IRBM has been implemented in the Komati River Basin and can be expanded to all river basins in Swaziland.

Good management of Swaziland's water resources are included in:

• Draft Water Policy, 2009

The water policy has produced a number of policy statements and strategies that related to water usage permits.

• The Integrated Water Resources Master Plan

This provides strategic guidance to decision makers and water users on how best to develop and manage the country's water resource within the framework for the implementation of existing policies and legislation.

2.1.2 Economic analysis

The Komati River Basin programme is taken as a model for technology diffusion, as it has many successes to report. Wilkinson et al. (2015) assessed the implementation of principles of integrated water resource management (IWRM) in the Komati River Basin, and concluded that good progress has been realised with respect to creating the enabling environment and institutional frameworks and relatively satisfactory degree of stakeholder participation has been achieved. The authors say that financial enabling environment, institutional capacity building and conflict resolution mechanisms need further attention. A phased approach was recommended, followed by formulating and implementing the institutional framework and creation and application of IWRM management instruments.

For the purposes of economic analysis, the Komati Basin Water Authority (KOBWA) capital investment costs have been used as an indicator. KOBWA's main purpose was to construct and maintain two dams; the Driekoppies Dam in South Africa and the Maguga Dam in Swaziland. Additionally, KOBWA is responsible for water management in the basin and has distributed 447 million m³ of irrigation water to the two member countries of Swaziland and South Africa. Total investment in the Komati Basin Development Project was E 1,716,006,300 and income was realised from sale of irrigation water to sugarcane estates and other users. Areas which previously experienced water shortage (such as Piggs Peak in Swaziland) have been supplied with water through this project. In addition, roads were constructed, community nurseries established for vegetables and fruit trees and the Maguga dam has become a tourist attraction. A river basin management programme of the KOBWA scale would require similar budget and hence for purposes of the BAEF economic analysis, we will assume a budget of E 1.7billion.

2.1.3 Preliminary targets for technology transfer and diffusion

The Swaziland Vision 2022 and National Development Strategy (NDS) promotes conservation and management of water and land resources. It has also been specifically articulated in the vision and strategy

that institutional capacity must be built to manage and coordinate water resources. It also includes the vision to promote catchment management plans for major river systems. The need for ongoing capacity building, training and creating awareness in this sector has been emphasised. Furthermore, Swaziland's Consitution (Section 210) states that in the interests of the present and future generations, the State shall protect and make rational use of its water resources.

The diffusion of IRBM as a technology is meant to contribute to this vision and sector objectives. The objectives with regard to diffusion of this technology is to ensure that River basins are effectively managed by enhancing capacity of River Basin Authorities (which were set up by the National Water Act 2003). Improved participation with communities, improved coordination of resource use and resource mobilisation are all part of this vision. This is in synchonous with Swaziland's Climate Change Strategy and Action Plan and with Swaziland's Intended Nationally Determined Contributions (INDC), where IRBM has been mentioned as helping the country to adapt better in the water sector.

2.1.4 Identification of barriers for Integrated River Basin Management (IRBM)

From stakeholder consultations at workshops, interviews of key experts and from literature review, barriers have been identified for IRBM. As this is not a market technology, market mapping was not done. The cost to implement an IRBM is difficult to estimate as it would depend on the river basin chosen and would need detailed analysis not only in Swaziland but also the countries the river is shared with, namely Mozambique and South Africa. Since the technology is specific to a river basin it is difficult to estimate economics of the programme. However, to implement an IRBM programme at the scale of UNDP project described above, the estimated costs are in the region of USD 7.5 million. It is assumed that this would be a non-profit developmental project that would accrue socio-economic and environmental benefits and help in adaptation thereby justifying the investment.

2.1.4.1 Economic and financial barriers

Key economic and financial barriers identified were inadequate investment and funds for effective IRBM programmes. The domestic funds allocated for IRBM activities by Government are inadequate and there is need to raise funds from external agencies.

Barrier	Explanation	Effects
Inability to get concessional	IRBM needs large scale investments. Loans	Inability to raise funds
loans from financial	will be more expensive without concessions.	resulting in weak/poor
institutions from developed	The costs of payment of interest for loans	investment in IRBM
countries as Swaziland is	could be high.	
classified as a middle income		
country.		

Table 3 Economic and Financial Barriers for Integrated River Basin Management

Inadequate domestic funds to	Country funds are allocated for the various	IRBM is not prioritised
implement IRBM	sectors and there is inadequate allocation of	under Government
programmes in Swaziland	funds for IRBM activities. There is need to	budgets when there are
	raise funds. Infrastructure costs of building	more urgent priorities in
	structures for erosion control, flood control,	the country
	water retension and catchment management.	
Lack of coordination of	Conventions such as the United Nations	Synergies in using funds
funding on programmes	Convension on Combating Desertification	in a coordinated manner
under different conventions	(UNCCD), United Nations Framework	are missed
	Convention on Climate Change (UNFCCC),	
	Convention on Biological Diversity (CBD)	
	influence activities in the river basins.	
	However, their funding streams are separate	
	and not coordinated. Duplicated and	
	uncoordinated efforts cause inefficient use of	
	resources.	

2.1.4.2 Non-Financial barriers

Non-financial barriers include slow implementation of the Water Act and water management strategies, weak institutional capacity, catchment degradation, pollution from agro-chemical run-off and climate change. As a response, stakeholders articulated the need for capacity building, setting up relevant institutions and greater awareness.

Table 4 Non- Financial Barriers for Integrated River Basin Management

Barrier	Explanation	Effects
Institutional Barrier:	The Act is in place but not	Due to legislations not
Slow implementation of the	effectively implemented due to	implemented fully, over
Water Act and Water	weak capacity of RBAs to	abstraction, pollution and poor
Management Strategies	implement it.	land management activities may
		continue, costing the country in
		terms of lost revenue, clean up
		costs and reduced water quality
		and quantity.
Weak coordination of IRBM	Institutions such as Ministries	Costs may get duplicated when
related programmes such as	responsible for agriclture, natural	efforts are not
land degradation management,	resources, water and forestry	streamlined/coordinated.
which is covered under United	need to coordinate efforts for	
Nations Convention to Combat	rehabilitation of land, catchment	Resource efficiency is improved
Desertification (UNCCD),	management and water resources	when efforts are coordinated.

United Nations Framework	management, which are all arms	
Convention on Climate	of IRBM systems.	
Change (UNFCCC) and		
United Nations Convention on		
Biological Diversity		
(UNCBD).		
Political Barrier:	As the rivers are shared with	If conflicts arise, it will stall
Conflicts in water use at multi	neighbouring countries, IRBM	progress of IRBM programmes,
country level	will need to involve all countries.	thereby causing loss of revenues
		and benefits from good basin
		management.
Conflicts in water use at local	River basin authorities are	Conflicts at local level could
level	controlled by central govt. But at	possibly cause inequitable sharing
	community level, there are	of water resources and vandalism
	traditional authorities responsible	of exisiting infrastructure as well
	for allocating resources (such as	as lack of cooperation from
	land) for use. Participation and	stakeholders involved.
	involvement of all authority	
	structures is needed to ensure	
	there are no conflicts	
Awareness Barrier:	Due to poor awareness, people	Effects may include over
Limited awareness on IRBM	may resort to activities which	abstraction of water, pollution and
and its benefits especially in	affect the river basin adversely.	poor land management activities.
the wake of water scarcity and		
climate change		
Mindset of communities is that	The mindset that "Water is free"	There is no ownership of water as
water is free and available for	and since it is God given, it	a communal resource. Water, if
all	should not be controlled by	considered free and available for
	humans, but freely available for	all, could promote wastage and
	anyone to use.	inefficient use.

2.1.5 Identified measures for Integrated River Basin Management (IRBM)

The following measures are identified to overcome barriers in implementing IRBM. They include both financial and non-financial measures.

2.1.5.1 Economic and financial measures

A major barrier to implementing IRBM is availability of funds. Since Swaziland cannot get concessional loans from the international community due to its middle income country status, other avenues are to be

used to acquire low cost finance. These include developing proposals to target other funds available including regional funds.

Financial Measures

Measure 1: Develop proposals to raise funds from international and regional institutions/opportunities.

Measure 2: Raise funds at national level through Public Private Partnerships (PPP).

Addressing Institutional Barriers

Measure 3: Establish a "Funds Coordination Platform" within Swaziland in collaboration with development partners, private sector, and other non-state actors. This platform can develop common strategies for usage of funds so that activities which are related to river basin management could be streamlined and synergies attained in usage of funds. The Funds Coordination Mechanism can create synergies and more efficient use of funds through coordinating activities in the river basin, such that duplication is avoided and cooperation and sharing of resources is encouraged.

2.1.5.2 **Non-financial measures**

Institutional Capacity building

Measure 1: Build capacity of officers responsible for implementing relevant legislations (such as the Water Act) through providing them training, technical support and equipment where needed.

Measure 2: Build capacity of institutions responsible, such as the River Basin Organizations through filling vacancies and adding more staff where needed (such as for water quality checks and leakage management).

Awareness Raising

Measure 3: Create awareness amongst stakeholders about IRBM and water resources management. Develop Information Education and Communication (IEC) materials, conduct road shows and hold community meetings and awareness sessions on utilization of water from river basins, role of RBA and environmental as well as developmental activities in river basins.

Addressing Political Barrier (reducing conflicts)

Measure 4: Create a Participatory Forum, where traditional authority and relevant stakeholders can be given a voice in decision making. This will prevent conflicts, create transparency, encourage dialogues and improve decision making.

2.1.6 Enabling framework for Integrated River Basin Management (IRBM)

Enabling framework for IRBM is presented in table below. In order to successfully implement IRBM, Swaziland must focus on developing proposals to raise funds for RBA activities, improving coordination of existing funds, improving awareness and institutional capacity, and improving participation with all players.

Barriers		Measures	Economic	Other consequences
			consequence of	of measures
			measures	
Fin	Financial			
1.	Inability to get	Develop proposals to	Funds needed for	No negative
	concessional loans from	raise funds from	technical support,	consequences
	financial institutions	international and	trainers and to hold	anticipated
	from developed	regional	workshops and	
	countries as Swaziland	institutions/opportunitie	meetings for proposal	
	is classified as a middle	s.	development	
	income country.			
2.	Inadequate domestic	Raise funds at national	Government internal	Government internal
	funds to implement	level through Public	budget would need to	budgets may not be
	IRBM programmes in	Private Partnerships	be used for the PPP	enough.
	Swaziland	(PPP)		Private companies
				may not be keen to
				join
3.	Lack of coordination of	Create a Funds	Meetings costs for the	There could be
	funding on programmes	Coordination	committee	resistance to creating
	under different	Mechanism, to create		this mechanism, as
	conventions	synergies and more		agencies may prefer to
		efficient use of funds.		manage their
				resources
				autonomously
No	n-Financial		L	
Ins	titutional Capacity	Build capacity of	Costs related to	Adequate expertise
4.	Inadequate capacity of	officers responsible for	effective	may not be available
	RBA officers leading to	implementing relevant	implementation of	in the country which
	slow implementation of	legislations (such as the	legislation, through	may cause vacancies
	the Water Act and	Water Act) through	recruitment of staff	to remain unfilled.
	Water Management	providing training,	responsible for	
	Strategies	technical support and	collection of revenues,	Review of legislations
		equipment where needed	inspectors, checking	is a long process.
		and review outdated	water usage and	
		legislations.	wastage, and review of	
			legislations.	
5.	Weak institutional	Build capacity of	Costs related to	Adequately trained
	capacity	institutions responsible,	training of staff and	people may not be

Table 5 Enabling framework for Integrated River Basin Management

		such as the River Basin	recruitment of new	available to fill
		Authorities through	staff	positions
		filling vacancies and		
		adding more staff where		
		needed (such as for		
		water quality checks and		
		leakage management).		
Av	vareness	Create awareness	Costs related to	Changing mind-sets
6.	Inadequate awareness	amongst stakeholders	awareness campaigns,	of people may take a
	on IRBM and its	about IRBM and water	IEC materials,	long time. There
	benefits especially in the	resources management.	community meetings,	could be resistance to
	wake of water scarcity	Develop IEC materials,	road shows etc.	ideas.
	and climate change	conduct road shows and		
7.	Mindset of communities	hold community		
	is that water is free and	meetings and awareness		
	available for all	sessions.		
Po	litical	Create a Participatory	Involve traditional	People in authority at
8.	Conflicts in water use at	Forum, where traditional	authorities and those	local level may resist
	local level	authority and relevant	who are influential at	
		stakeholders can be	local level	
9.	Weak coordination of	given a voice in decision	At the forum	Resistance may be
	IRBM related	making. This will	stakeholders	faced from
	programmes such as	prevent conflicts, create	responsible for	stakeholders
	land degradation	transparency, encourage	implementing	responsible for
	management, which is	dialogues and improve	programmes as part of	conventions as this is
	covered under UNCCD,	decision making.	UNCCD, UNFCCC	in addition to their
	UNFCCC and CBD		and CBD conventions	normal duties
	conventions.		must be included	

2.2 Wetland Protection and Restoration

2.2.1 General description of Wetland Protection and Restoration

Wetlands have important ecological functions of maintaining biodiversity and act as a sponge in regulating water flow thereby controlling floods. The dense root mats of wetland plants also help to stabilize shore sediments, thus reducing erosion. Wetlands can be of many types and sizes. Wetland restoration relates to the rehabilitation of previously existing wetland functions from a more damaged to a less damaged or operational state of overall function. Human activities of farming on wetlands, filling wetlands for using the land for settlements and allowing livestock to drink water in wetlands, all upset the soil conditions and damage its ecological functions.

Wetland rehabilitation and restoration helps maintain its ecological functions of flood control and biodiversity maintenance. It also helps maintain the micro climate and allow vegetation to thrive. Some special vegetation such as reeds and medicinal plants grow on wetlands which have human well-being benefits. Wetlands are aesthetically pleasing. Wetland restoration needs expertise especially if transplantation of wetland plants is needed. Activities include planting wetland plants and providing fencing around wetlands to prevent livestock from entering. The advantages of wetland restoration and protection far outweigh the disadvantages.

Communities tend to allow their livestock to graze on wetlands during dry spells which causes negative impacts as the soil in wetlands is compacted by livestock. The importance of wetland restoration needs to be elevated and awareness raised in Swaziland in this regard. If communities are made aware of the economic benefits of restoring wetlands, then there is potential for self-help groups undertaking this at their own expense. Furthermore, through eco-tourism and sustainable harvesting of products, communities will be able to offset the cost of restoration. With climate change, it is expected that wetlands will face drying up, but this will accelerate if human activities are degrading wetlands. Conservation of wetlands helps build ecosystem resilience as well as resilience of humans through hazard mitigation and biodiversity and micro climate maintenance.

Wetlands can be used as public spaces for recreation and eco-tourism. Wetlands have natural flood control mechanisms and so saves costs of dealing with flood disasters. Restoration provides a small number of jobs. Other goods and services provided by wetlands, such as the provision of wood, insects, reeds for basketry, medicinal plants and fibres help in income generation for local communities. Micro climate around wetlands and its aesthetic qualities can have healing effects for humans. The case for protecting wetlands is also a biodiversity conservation one. Swaziland has 2,600 species of flowering plants, approximately 121 species of mammals, 153 amphibians and reptiles, and 350 species of birds; making it unique in floral and faunal species richness (UNDP, 2011). Many species need wetlands as habitats for survival and/or breeding.

Awareness raising on wetlands have been done to some extend in Swaziland through the commemoration of World Wetlands Day. The Water Act of Swaziland promotes the need for protecting water resources including wetlands. In many of Swaziland's regulations (e.g. National Climate Change Strategy and Action Plan), ecosystem approach is recommended and in this approach, maintaining ecological functions of

important natural areas such as wetlands comes in. But, more needs to be done to ensure wetland's ecosystem functions remains protected in Swaziland.

2.2.2 Economic analysis

There are two major sources of funding for the restoration and protection of wetlands, internal/governmental budgets and development partners funds. It is difficult to estimate the cost of a wetland restoration and rehabilitation programme unless the area to be restored is known. For the purposes of economic analysis, two projects were examined, one is a large UNDP implemented project and the other, a smaller National Environment Fund project.

The UNDP and Government of Swaziland funded project "Strengthening the National Protected Areas System of Swaziland" is examined first. The Protected Areas (PA) programme had three areas namely:

Component 1: Knowledge based platform operationalized at the National and regional level to address current and emerging threats to PAs and biodiversity conservation.

Component 2: Landscape approach operationalized and leads to expansion of PA network.

Component 3: Strengthening PA functioning through improved conservation management and operational support for existing and new PAs, including both formal and informal PAs.

The total budget for this Global Environment Facility (GEF) and Government of Swaziland funded programme, implemented from 2011 to 2015 was USD 28,990,000. Implementing partners were the Swaziland National Trust Commission (SNTC) a parastatal organisation, in close cooperation with the Ministry of Tourism and Environmental Affairs (MTEA).

A smaller project funded by National Environment Fund is examined next. The Lawuba wetlands protection project was implemented by the Environment Fund, Swaziland Environment Authority (SEA) and World Vision on protecting the Lawuba wetland which provided livelihoods to communities living around it. The Environmental Fund started operating in 1999 and continues donga restoration, botanical gardens restoration and wetlands protection projects. The total budget for the Lawuba wetland protection (covering 20 hectares) was E278, 000. The project entailed holding awareness raising sessions, fencing the wetland and sustainable harvesting of grasses and reeds for basketry by women in the area. Women weavers reported earnings of E1.2million from selling crafts made from fibres harvested from the wetland (see figure below).

The Lawuba wetland project is chosen for purposes of the TNA as a model for budgeting in this BAEF. The project has accrued benefits which are desirable for helping communities and the environment adapt to climate change (see figure below). The UNDP project has a larger scope and hence not used as a model in this case.

Figure 4 Newspaper article on wetlands protection project

Swaziland's range of wetlands are found along the country's rivers, flood plains, swamps, bogs, vleis, and dams (man-made). An inventory of major wetlands in Swaziland was done by Masarirambi et al. (2010) and presented in table below.

No.	Name	Type*	Area (ha)	Remarks
1	Milwane	D	25	Protected
2	Hlane	D	4	Protected
3	Matsapha	D	92	Proposed for protection
4	Sand River	D	727	Limited protection, increased protection proposed
5	Malolotja	V	8	Protected
6	Nyetane	D	2	Future protection unlikely
7	Mlawula	D	4	Proposed for protection
8	Nyetane	D	260	Proposed for protection
9	Ubombo	D	22	Proposed for protection
10	Pangolo	D	492	Proposed for protection when filled
11	Ndlotane	V	5	Proposed for protection
12	Sukasihambe	В	2,000	Now being planted with sugar-cane but rich in bird-life
13	Mangwenya	Р	6	Proposed for protection
14	Mnjoli	D	2,565	Proposed for protection

Table 6 Inventory of wetlands in Swaziland

	15	Shovella	D	8	Proposed for protection				
*•	$\dot{B} = basin, D = dam, P = pan, S = shallows, V = ylei$								

Choosing five wetlands for protection which range from size of 4 to 22 hectares, costs are calculated approximately using Lawuba wetland protection costs as datum. The costs for fencing may reduce in some wetlands if hectarage is low, but community awareness sessions and other expenses remain similar, hence total cost comes to E278,000 x 5 = E1.39million. The wetlands chosen are the ones proposed for protection, namely; Mlawula, Ubombo, Ndlotane, Mangwenya and Shovella. Larger wetlands of over 22 hectares have been left out as cost estimation would be difficult.

2.2.3 Preliminary targets for technology transfer and diffusion

The Swaziland Vision 2022 and National Development Strategy (NDS) promotes wetland restoration and protection through its overall vision of conservation and management of water and land resources. Wetland restoration is targeted through this vision as it contributes to managing, coordinating and monitoring water resources in a systematic and equitable basis. This is further supported by Swaziland's Consitution (Section 210) which promotes rational use of its water resources. The diffusion of the WRP technology contributes to this targets as it supports flood protection, biodiversity and livelihoods enhancement which contributes to management of water resources. This is in synchonicity with Swaziland's Climate Change Strategy and Action Plan and with Swaziland's Nationally Determined Contributions, where WRP has been mentioned as a technology helping Swaziland to effectively adapt to climate change. Here, community participation and awareness is key for success and these are included as measures.

2.2.4 Identification of barriers for Wetland Restoration and Protection

2.2.4.1 Economic and financial barriers

Wetlands rehabilitation and protection in Swaziland received inadequate funding and many wetlands which have been earmarked for restoration and protecton have not been provided funds for implementation of restoration activities. There are many environmental activities such as protected areas management, livelihood projects, agricultural projects and others which have overlaps with wetlands restoration and protection. Hence funds get allocated into different streams and this could cause duplication of efforts. Hence, a funds coordination mechanism is suggested where any activities related to environment, agriculture, tourism, development or conservation have the opportunity to coordinate use of funds for wetlands restoration activities. Thus, synergy in usage of funds can be achieved, thereby having greater results for wetlands restoration and protection. The barriers are discussed in further detail in table below.

Barrier	Explanation	Effects
Inadequate funds for wetland	Due to inadequate knowledge of economic	While wetland
rehabilitation and protection	benefits from wetlands, funds are prioritised	degradation is less
	for other perceivably more urgent and	costly to address in the
	important activities (such as health,	early stages, this

Table 7 Barriers identified by the stakeholders for Wetlands Restoration and Protection
	education) and wetland restoration gets less	opportunity may be
	importance and is relegated to fall under	lost and some wetlands
	environmental "donor funded" projects.	may completely lose
Poor coordination of funds	Funds used for environmental project and	their ecological
which are used for	climate change activities could be synergised	function in future.
environmental projects	and activities related to wetlands restoration	
which may entail wetlands	and protection could be coordinated.	
protection.	Synergies could be lost when sectoral	
	approach is used due to inadequate	
	coordination.	

2.2.4.2 Non-financial barriers

Table 8 Non-financial barriers for Wetland Restoration and Protection

Barriers	Explanation	Effects
Awareness	Awareness on the miriad functions of wetlands as	Communities resort to using
Low	habitats for biodiversity, flood protection and	wetlands for livestock grazing
awareness	micro climate regulation is not fully appreciated	during dry periods, thereby
about the	by community who view it as a resource to be	disturbing soil and fauna. Over
importance of	exploited. Awareness of professionals in the	abtraction of reeds, grasses and
wetlands	construction sector need to be improved so that	hunting of wild animals will
	they do not build on wetlands. Farmers must be	threaten the habitats and cause
	made aware not to farm on wetlands. Banks must	species loss.
	be informed that their agricultural loans must not	
	be used to promote farming on wetlands.	
Mindset of	Wetland's long term benefits of flood control and	When short term gains are looked
looking at	habitats for biodiversity are not appreciated.	at, exploitation of resources
short term	Immediate needs of grazing and farming on	occur.
benefits versus	wetlands to utilise the moisture retained	
long term ones	contribute to degradation. People must be made	
	aware of long term benefits.	
Institutional	Regular inventory of wetlands and monitoring	Some wetlands may continue to
capacity	their health is needed in order to take remedial	be degraded and authorities may
Monitoring of	actions when needed.	be unaware of their status. If
wetlands		timely actions are taken they
health is		could be restored to good health.
inadequate		
Unclear roles	As wetlands fall under a variety of land uses, such	When there is confusion of roles
and	as land for agriculture, land for forests and land	and responsibilities in

responsibilities	for settlements, there is less clarity on who should	management of areas with
on wetland	manage it. Participatory management should be	wetlands, the environment
protection	encouraged where traditional authorities are	ultimately suffers. Activities of
	involved in wetlands protection.	farming and building may occur
		on wetlands thereby
		compromising its ecological
		functions.

2.2.5 Identified measures

2.2.5.1 Economic and financial measures

Financial

Measure 1: Set a funds coordination mechanism involving stakeholders where meetings are held regularly and synergies in usage of funds for wetlands restoration and protection by agencies working in same areas are realised.

Measure 2: Proposal development for wetlands restoration and protection for shortlisted wetlands Mlawula, Ubombo, Ndlotane, Mangwenya and Shovella.

2.2.5.2 Non-financial measures

Awareness

Measure 1: Create awareness of importance of wetlands through community level meetings and site visits for communities living near wetlands. Long terms benefits of wetlands need to be emphasised.

Institutional capacity

Measure 2: Create a wetlands monitoring system to be implemented and published regularly by Swaziland Environment Authority on an ongoing basis.

Measure 3: At the funds coordination mechanism meetings grey areas in roles and responsibilities can be discussed and better clarity arrived at.

2.2.6 Enabling framework for Wetlands Restoration and Protection

The barriers for wetlands restoration and protection is presented here and measures are presented alongside with their expected economic and other consequences.

Barriers	Measures			Economic consequence	of	Other consequ	iences of
				measures		measur	es
Financial	Proposal	development	for	Proposal	writing	Other	positive
	wetlands	restoration	and	workshops an	nd follow	consequ	iences

Table 9 Enabling framework for up scaling Rain Water Harvesting technology in Swaziland

Inadequate funds for	protection for shortlisted	up meetings may cost	may arise from
wetland rehabilitation	wetlands Mlawula Libombo	a nominal amount as	this by
and motostion	Ndlatana Manawana and	there ear he held in	development of
and protection.	Nototane, Mangwenya and	they can be held in	development of
	Shovella.	Mbabane at SEA	larger projects
		conference venue	which cover more
			than wetlands
			restoration and
			protection.
Poor coordination of	Set-up a funds coordination	To hold meetings for	Stakeholders may
funds for environmental	mechanism involving	this coordination team.	want to have
projects which may	stakeholders where meetings	it is assumed SEA	autonomy in
entail wetlands	are held regularly and	Conference venue is	funds usage for
protection	are need regularly and	used at nominal rates	their projects and
protection.	synergies in usage of funds for	an an in kind	men projects and
	wettands restoration and	or as in-kind	may not be
	protection by agencies	contribution.	willing to work
	working in same areas are		together to create
	realised.		synergies.
Awareness	Create awareness of	Costs would entail	Improved
Mind-set of looking at	importance of wetlands	community meetings	awareness of
short term benefits	through community level	and this would be part	importance of
versus long term ones	meetings and site visits for	of wetlands restoration	wetlands will
C	communities living near	and protection project.	promote
	wetlands Long term benefits	and protocolon project	conservation by
	of wetlands need to be		communities
	amphasised		communities.
Institutional canadity	Create a wetlands monitoring	Costs for setting up a	Other positive
Monitoring of watlands	eventer to be implemented and	monitoring up a	
Monitoring of wetlands	system to be implemented and	monitoring system	consequences
nealth is inadequate	published by SEA on an	may be reduced as	may be that
	ongoing basis.	SEA can use remote	general
		sensing to monitor	monitoring of
		wetlands and this	landscapes will
		capacity already	improve due to
		exists.	this deliverable.
Unclear roles and	At the funds coordination	There are positive	Improved clarity
responsibilities on etland	mechanism meetings grey	consequences to this	of roles and
protection	areas in roles and	measure, as more	responsibilities
		1	-
	responsibilities can be	efficient use of funds	through improved
	responsibilities can be discussed and better clarity	efficient use of funds will be achieved	through improved dialogues and

2.3 Rooftop Rain Water Harvesting

2.3.1 General description of Rooftop Rain Water Harvesting

Due to climate change, rainfall patterns are expected to change and water stress may be experienced in Swaziland (Government of Swaziland, 2016). Hence it is vital that rain-water be stored, conserved and reused. Collecting rainwater from rooftops is an easy and fairly inexpensive way to increase amount of water availability in a household. The harvested water can be used for a myriad of uses from domestic to irrigation uses, depending on how it is filtered and treated. A range of rainwater harvesting (RWH) technological options are available and depends on the quality, cost, and sustainability of other residential water supplies, precipitation patterns, household income, and other factors. Furthermore, it depends on rainfall available and this varies with the ecological zones in Swaziland, which are highveld, middleveld, lowveld and lubombo plateau. Table below gives rainfall data for ecological zones of Swaziland.

Ecological zone	Rainfall mm/year
Highveld	700 - 1550
Middleveld	550 - 850
Lowveld	400 - 550
Lubombo Plateau	550 - 850

Table 10Rainfall in ecological zones of Swaziland

Source: FAO (2005)

RWH helps households adapt to climate change primarily through two mechanisms: (1) diversification of household water supply; and (2) increased resilience to water quality degradation. Harvesting rainwater helps reduce the pressure on surface and groundwater resources by decreasing household demand. With climate change affecting rainfall patterns, storage of rainwater can provide short-term security against periods of low rainfall and the failure or degradation of other water supplies. Water scarcity impacts of hindering economic development and affecting human health and well-being can be reduced using RWH.

A rooftop RWH system includes: (1) a catchment surface such as the roof of a house where precipitation lands; (2) a conveyance system of gutters and pipes to move and direct the water; and (3) containers such as tanks to store the water for later use. It is important to protect and maintain water quality in RWH systems and it can be done through filtration/screening, chemical disinfection, or a "first flush" system. First flush systems rejects the first rainwater volume which may contain impurities. Harvested rainwater can be used with proper filtration for potable use, or with no treatment for watering gardens and flushing toilets. Construction and repairs should be done/managed by households and there must be some training provided in this regard. It is suggested that households must install the RWH tanks as far as possible without external "experts" as it is a simple technology and this will help up-scale the technology. A simple plastic tank RWH system is fairly easy to install with minimal training. The Department of Water Affairs can provide technical advice whenever necessary by their skilled personnel. Arrangements should be provided by the Department of Water Affairs to test quality of stored water on a regular basis.

The hard roof of a house or building is the catchment area should not have paint on roofs which is toxic. Roofs made out of organic materials such as a thatched roof are also suitable for RWH provided they have guttering and in some instances one may use polythene coverings or other materials to reduce the permeability of thatched structures. Capture of the runoff via gutters or tanks is done and gutters and pipes can be of aluminium or PVC. Maintenance is required especially to ensure that contaminants present on the roof do not fall into the storage tank. This can be done by closing the downpipe with an end cap or valve and discarding the first flush of rainwater. Chemical disinfectants may be used to maintain water quality. Cleaning of screens and filters is essential. Storage tank should be closed using a lid and should not allow sunlight to enter to prevent algal growth. The whole rainwater collecting system should be cleaned at least 2-3 times per year, especially prior to the rainy season and after a long period of dry weather or after strong winds. Catchment surface and gutters have to be kept free of bird droppings, leaves and rubbish. The filter should be changed once in every three months. Mosquitoes can also breed in tanks if lids are not provided. Rooftop harvesting of rain water can be done at scale of households. A typical operating lifetime of a rooftop RWH system is about 15 years and can be more, if maintained well. Operational costs are minimum aside from regularly changing the filter, cleaning for debris and sediments, and repairs of potential leaks.

RWH technology has many advantages. It can help augment water supply during dry spells, thus helping households adapt to climate change. Use of RWH for agriculture is complementary to the current practice of irrigation and would strengthen system resilience. Harvesting rainwater also reduces demand from other sources of water such as surface and groundwater which are affected by climatic variations and assures water supply for various uses in a household. With this technology, water resources are diversified and households are better able to adapt to dry spells. Other advantages include improved water security as RWH helps provide extra water for food production and improves household hygiene and health. Households can improve their health from better sanitation using the additional water available from RWH systems. Using water from clean RWH system reduces waterborne diseases compared to usage of unclean sources. RWH helps in reduced ecosystem degradation through preventing siltation and erosion due to reduced runoff and helps to maintain or increase groundwater table, as there would be less reliance on groundwater for household use. Furthermore, RWH can increase job opportunities. Farmers using RWH for augmenting irrigation can lower the risk of their crop failures and thereby raise profits. The cost for water supply in households can be reduced with RWH systems, thereby providing them with extra funds for other economic activities that will improve their wellbeing. It also saves the time taken to collect water from sources far away and ensures continuous supply of water if the tank is large enough.

Singwane, and Kunene (2010) argue that rainwater harvesting is a viable technology for Swaziland. It is being used in a number of households, but only a few households who have tanks large enough to store water for the whole year. The authors argue that "if households could afford big storage facilities the acute water shortage problem could be averted especially when there is adequate rainfall during the wet season" (Ibid, 2010). Furthermore, this technology can provide water for household gardens where vegetables can be grown, which have positive impacts on nutrition (Ibid, 2010). The technology is viable because of Swaziland's subtropical climate with summer rains (75% in period of October till March). "The long-term average rainfall figure for the Highveld, the Middleveld, the Lowveld, and the Lubombo Plateau are 950 mm, 700 mm, 475 mm, and 700 mm respectively" (Manyatsi and Brown, 2009). RWH systems if large

enough can store enough water for a household to supplement piped systems and for extra water use such as for household vegetable gardens and for sanitation during dry periods. During dry periods water may also be used for domestic purposes. Below is a picture of RWH tanks at a local school in Hhohho region.

Figure 5 Rainwater harvesting at a school near Mbabane in Swaziland

Economic analysis of RWH tanks:

RWH installation costs are assumed to be E20,000 for two 5000litre plastic tank, pipes, guttering, preparation of roofs for harvesting, platform for placing the tank and labour for installation (Bruce Jameson, *Pers. Comm*). In 2007, Swaziland had 212,403 households with an average household size 4.7 persons (African Health Observatory, 2017). But only 19.5% of Swazis use plastic tanks for rooftop RWH, according to Vilane and Mwendera (2011). More recent data was not available, so this data was used for purposes of this economic analysis. This economic analysis will assess the up-scaling of RWH to 50% of households in Swaziland. That is an additional 64,783 households to be served. The average life of plastic tank is assumed to be 15 years (although well maintained tanks can last 20 years too).

Stakeholders suggested including soil erosion control and groundwater infiltration methods such as soakaways as part of the RWH system (*Personal Communication*, Prince Mngoma). It is anticipated that such structures do not need much external inputs except for labour which we assume the household will provide and hence not included in the economic analysis.

Table 11 Cost benefit analysis for RWH

Year	Cost of	Cost of maintenance	Savings in terms of water cost
	Installation	(E-Emalangeni)	(E-Emalangeni)
	(E-Emalangeni)		

Year 1	20,000 for 64,783	1,000. Every year	Assuming each household saves
	households =	maintenance would increase	50,000 litres of water in a year. The
	1,295,658,300	by 10% taking into	unit cost of water is E10 per
	(approx. 1.3	consideration rise in labour	1000litres. Water savings is E500 per
	billion)	costs and inflation. The	household per year. For total number
		maintenance includes	of households targetted, it amounts to
		cleaning, adding chlorine	E32,391,500.
		tablets, maintaining guttering	
		etc.)	
Year 2		1,100 (assuming increase of	35,630,650
		10% every year)	
Year 3		1,210	39,193,715
Year 4		1,331	43,113,087
Year 5		1,464	47,424,395
Year 6		1,611	52,166,835
Year 7		1,772	57,383,518
Year 8		1,949	63,121,870
Year 9		2,144	69,434,057
Year 10		2,358	76,377,463
Year 11		2,594	84,015,209
Year 12		2,853	92,416,730
Year 13		3,138	101,658,403
Year 14		3,452	111,824,243
Year 15		3,797	123,006,667
TOTALS	E 1,295,658,300	E31,772	E1,029,158,341

The recommendation is to subsidise the tanks to up to 50% and subsidy vouchers could be provided to 64,783 households in areas where RWH will be viable (where households have adequate roofing, can afford to pay the remaining 50% cost and rainfall is adequate) in selected districts of Swaziland. The cost of subsidy is **E 647,829,150** (half of price of system multiplied by the number of targeted households) and time frame recommended is three years. This will form the bulk of the project cost. Although the water savings are less than the investment costs, there are other benefits that this technology brings which have not been costed. These include improved hygiene and health, improved food security by using rain water for household gardens and access to water during dry periods. During dry periods, usage of contaminated water can have adverse health effects and RWH can prevent this through making water available during such times. Spill-over effects will include saved times for women to collect water, improved attendance at school for children and improved general household hygiene and health. The technology could last up to 20 years if well maintained and by then, the returns in terms of water savings will be **E 1,855,223,146** which is much greater than investment.

2.3.2 Preliminary targets for technology transfer and diffusion

The RWH technology meets the targets set by Swaziland's National Climate Change policy which includes "Enhance the adoption of rain harvesting technologies" as a policy statement. Furthermore, the Swaziland Vision 2022 and National Development Strategy (NDS) promotes efficient use and conservation of water including emphasising on water harvesting. The Water Act 2003 promotes increasing access to water. The need for ongoing capacity building, training and creating awareness in this sector has been emphasised. Additionally, Swaziland's Constitution (Section 210) promotes rational use of its water resources. The diffusion of RWH technology achieves these targets laid out in the country's vision. Access to water is improved in communities through water harvesting and this is also in synchonicity with Swaziland's Nationally Determined Contributions, where RWH have been mentioned as helping the country adapt better for the water sector.

2.3.3 Identification of barriers for Rain Water Harvesting

Based on literature review, the stakeholder consultations, bilateral meeting with Bruce Jameson (Moss Foundation) who has installed over 200 rainwater harvesting tanks in Swaziland and the consultant's own knowledge, barriers were identified for RWH technology in Swaziland. In addition, a market mapping exercise was done to identify any bottlenecks in the value chain.

Figure 6 Participants at the BAEF workshop preparing problem and solution trees

The market mapping was done by stakeholders during the BAEF workshop (see Appendix). Stakeholders were split into groups and key results of the discussions are as follows:

- The major barriers were weak implementation of legislations, affordability of tanks, poor awareness, labour intensive method of concrete tanks construction, inadequate number of accredited builders in rural areas, lack of quality standards and information on how to make the RWH system structurally compatible with dwellings. Rainfall variability was also mentioned as a barrier as it demotivates people to invest in RWH especially during drought periods.
- 2. The major players listed in the market map were Government that directly imports tanks for their projects, private companies that import tanks and one tank manufacturing company (Oasis). In case of concrete tanks, wholesalers and retailers that supply construction materials are then linked to builders and end users.

- 3. The other players are retailers that sell tanks and installers (plumbers, contractors) and finally the consumers themselves. These were all mapped in the market maps and their connections are also mapped.
- 4. Government buys directly from manufacturers as well as imports tanks or buys from retailers and uses contractors who would install tanks for the various projects.
- 5. Manufacturering and importing companies sell tanks to retailers, who then sells to consumers.
- 6. The enabling measures listed in the market map included enforcing regulations (this was reconsidered during further analysis under Chapter 5), providing subsidies, outreach activities, review of relevant policies and encouraging Swaziland Standards Authority (SWASA) to provide standards for RWH.

The market maps highlighted the linkages between Government, suppliers, retailers, wholesalers, builders and end users. The bottlenecks identified from market mapping was few suppliers for RWH tanks and few trained people for installation of RWH systems. Other bottlenecks were affordability and lack of proper standards for RWH systems.

2.3.3.1 Economic and financial barriers

Key economic barriers identified include the high cost of the tank, costs related to fixing rooftops which are in state of disrepair and costs related to treatment of water when it is stored for a long duration. The following table provides information on the barriers identified by stakeholders and cost breakdown for items.

Barrier	Cost for individual	Remarks	Effects
Relatively high cost of	Cost of purchasing the	The system has to be	Due to high
rainwater harvesting tank, due	tank, transporting to the	replaced after 10 years.	costs, there
to inadequate local	homestead and		would be fewer
manufacturing (only one	installing is E10,000 for		adopters of this
company manufactures tanks	a 5000litre tank.		technology and
in Swaziland, others import			people may rely
from South Africa)			on streams and
Many households do not have	The cost for roofing the	Costs would include	rivers to
corrugated rooftops. The root	house is substantial and	that of corrugated iron	supplement their
cause is availability of	difficult to estimate.	roof, PVC gutters and	water supply
affordable finance as bank loan		pipes, filters and costs	thereby risking
interest rates range from 15-		of building a base for	using
17%.		the tank.	contaminated
Costs of treatment for water	Cost of chlorine tablets,	Tanks must be cleaned	water.
when it gets infested by	approximately E20	2 to 3 times a year	
pathogens	(\$1.25) to be used every		
	six months. The cost of		
	labour for cleaning the		
	tanks and gutters may		
	also be added.		

Stakeholders suggested in the second BAEF workshop that the technology "rooftop rainwater harvesting tank" should be changed to an integrated rooftop rainwater harvesting system which includes soil erosion control methods and ground water recharge methods such as construction of sumps and erosion dykes. These are assumed to be done by the household on their own and required labour and minimal external inputs.

2.3.3.2 Non-financial barriers

Several Non-financial barriers were identified by stakeholders (see table below). Swaziland does not have a legal requirement for households to harvest rainwater. Some countries have a law that makes it compulsory to build rainwater harvesting structures when constructing a house (Singwane and Kunene, 2010). Swaziland does not have standards for RWH systems and there is a need for raising awareness on RWH methods and how to design the system for those who are building houses. There are some technical barriers too, as the different types of roofs as well as slope of roofs will impact the ease of harvesting

rainwater. Stakeholders mentioned that there is a need in Swaziland for training of people who can install these structures as well as households need to be trained to manage the systems. There is a possibility of the systems being vandalised and stolen including the threat of people using the tanks for unlawful activities such as poisoning the water in the tank. This is particularly relevant as the tanks are placed outside the house and therefore accessible for people from outside.

Barriers	Explanation	Effects
Legislative Lack of legal instrument and building standards for RWH	The construction of rainwater harvesting systems is not compulsory by law in Swaziland. Neither does building standards provide guidance on RWH standards.	 Fewer adopters of this technology, as it is not required by law. There is ambiguity regarding RWH system in projects where systems are constructed in schools. When pathogens are found in the water, it is unclear who should address this, Ministry of Health or Department of Water or the development agency who funded the project
Awareness Information is inadequate and awareness of technology remains low	In Swaziland, there is less focus on RWH and more focus on piped water supply in rural water supply schemes. Information on how to design RWH systems in houses and in general about the technology is inadequate in Swaziland. There has not been much advocacy work on RWH in Swaziland, as previously water was considered plenty, until the severe droughts of 2015-2016 were experienced. RWH is not emphasised in school curricula.	Since awareness is low, there are limited adopters of this technology. As a result, people do not harvest rainwater. Water scarcity may be experienced in dry season, which could have easily been reduced through rainwater harvesting. Thus, it's a lost opportunity.
TechnicalSetting up thesystemdependsonroofingandrainfallpatterns	In areas where low rainfall is experienced, RWH may not be viable. The type of roofing material and the slope of roof will influence use of this technology. The subsidy that is recommended to be provided to up-scale RWH includes funds for repair of roofs to make it compatible for this	There is a missed opportunity of designing houses with RWH systems during its construction phase, as it is costlier to set the system up after building is already constructed.

Table 13 Non-financial barriers for Rain Water Harvesting technology

	technology. Training on such technical	
	matters will help.	
Capacity	There is need for people to be trained in	When RWH systems are incorrectly
Inadequate	proper installation of tanks and its	installed and fails, there is a tendency to
skilled	management. Often it is the owner of the	criticise the technology and lose faith in it.
installers	house that installs the tank when he/she	Furthermore, if skilled people are not
available	constructs the house and if they are not	available locally, they have to come from
locally	installed in proper manner, their	far distances and this ads to the cost of the
	performance may be poor.	system. Lack of capacity also translates
		into loss of jobs locally, as people have to
		rely on people who are not from their area.
Social and	Since the tanks are often placed outside	Awareness and popular use of this
behavioural	the buildings, there is fear of the	technology may help address these
Theft and	possibility of theft and vandalism of the	barriers.
vandalism of	tanks and even poisoning of the water in	
RWH systems	the tank.	
is possible		

2.3.4 Identified measures

Based on the stakeholder consultations, the consultant's own knowledge and international experiences, the following measures were identified to overcome the barriers for RWH technology.

2.3.4.1 Economic and financial measures

In order to overcome the economic and financial barriers, stakeholders suggested a number of measures. Measure 1: Government could subsidise RWH tanks (by 50% of its cost) by providing vouchers to homeowners which could be provided to tank suppliers and subsidised tanks. Households that would be targeted would be lower middle income category, as costs to repair roofs would be within the budget planned. Total number of households targeted are 64,783.

2.3.4.2 Non-financial measures

Legislative

Measure 1: Legislative measures may help in improved adoption of RWH technology. A policy to promote RWH may be required in Swaziland or it could be amended into the Building Control, Water and Public Health Acts of the country.

Measure 2: SWASA needs to make RWH standards and link it to building standards. These standards will maintain quality for construction of RWH systems for individual households and when RWH is done as part of a development project in collaboration with several partners such as non-governmental organizations (NGOs), community based organizations (CBOs), donors and Government Institutions.

Awareness and social/behavioural

Measure 3: Improving awareness. Measures to improve awareness would include setting up a RWH Forum which includes all relevant stakeholders. This forum may be part of the existing Water Sanitation and Hygiene (WASH) forum in Swaziland and take the role of exchanging knowledge and experiences as well as updating stakeholders on progress with RWH in the country. Information on rainfall data and simple methods of calculating size of RWH tanks, could be shared with general public though awareness campaigns, which may include television shows, radio broadcasts, posters and flyers. This is anticipated to address barriers with regard to concerns regarding poisoning, theft and vandalism when awareness raising is done in a community covering all memebrs of varying socio-economic groups.

Capacity building

Measure 4: Demonstration projects may be set up in prominent places in the country.

Measure 5: School curricula needs to be revised to include RWH with a practical approach and hands on training at tertiary level.

Measure 5: Introducing RWH technology in tertiary schools, and providing skills training. This will help ensure availability of many skilled people to install and maintain RWH systems in Swaziland. This will reduce the cost of bringing people from far distances for installation and maintenance.

2.3.5 Enabling framework for RWH systems

Below is the enabling framework for RWH systems. The barriers for RWH is presented here and measures are presented alongside with their expected economic and other consequences.

Barriers	Measures	Economic	Other consequences of
		consequence of	measures
		measures	
Financial	Subsidize the tanks (by 50%)	Cost of subsidy	There is possibility of
High cost of	by Government and provide	provided to 64,783	vendors of tanks misusing
installing RWH	vouchers to households	households is E647,	the vouchers, possibility
system	which can be presented at	829,150.	of conflict on selection of
	shops to buy the tanks at		benefitiaries, and risk of
	subsidized rates.		tanks being bought but not
			used.
Capacity	Schools, tertiary institutions	This can be done with	Educational institutions
There are few	and vocational training	budgets for	may be resistant due to
skilled people to	centres to provide skills	educational	additional resources
install and	training on RWH	institutions and the	needed and extra load for
maintain RWH	technologies and incorporate	Ministry of	teachers.
systems and this	this into curricula.	Education.	
drives up the cost	Short courses and		
of setting RWH	community outreach		

Table 14 Enabling framework for up scaling Rain Water Harvesting technology in Swaziland

systems in Swaziland	activitiestotraininstallerswhoarefromthecommunitiesinRWHsystemsconducted.		
Legislative Harvesting rainwater is not compulsory by law in Swaziland and hence there are few adopters.	Review of Building Control Act, Water Act 1967 and Public Health Act to encourage RWH systems and clarify roles of agencies who would be responsible for maintenance of systems	Review of legislation requires time and resources and may not be an immediate priority for the country.	Buy-in of all stakeholders concerned, as well as custodians of the legislation is required and this may take time and resources.
Awareness Weak capacity in constructing RWH systems and poor awareness of systems and their benefits	Set up a RWH Forum within Water Sanitation and Hygiene (WASH) Forum.	Setting up the forum may require minimal resources, as the WASH Forum already exists and RWH can be a sub- committee within that.	There could be resistance for WASH Forum to include RWH, but this can be overcome by discussions with m embers and making a convincing case.
	Prepare promotional materials which includes information on rainfall and methods of choosing size of tanks according to needs and region.	Preparing, printing and distribution of promotional materials in the form of television programmes, radio broadcasts, posters, flyers and manuals will require resources.	Internal budgets of Government could be used for preparing and printing promotional materials. Funds may have to be sought from development partners for this purpose.
	Set up demonstration sites which will be used for educational sites to create awareness of RWH systems.	Setting up new demonstration sites will require resources. Alternatively existing schools with RWH could be used as demonstration sites.	Demonstration projects may be vandalised if not managed well.

The above barriers and measures as well as enabling frameworks were derived from problem and solution trees developed by the stakeholders and further developed during the second workshop held under BAEF phase. Further analysis and selection of measures was done in Chapter 5.

2.3.6 Linkages between barriers and complementarities between technologies

The three technologies prioritised for water sector have certain linkages and complementarities. The common barriers in all three technologies was inadequate funding, weak capacity and low awareness. When applying for funds, integrated projects (which include more than one of the technologies) will help in attaining synergies. A Funds Coordination Mechanism is therefore proposed to coordinate usage of funds as projects that include wetlands restoration may which also falls within river basins. IRBM and WRP will enhance the ecosystem health, leading to improved water quality and reduced flooding, which will be beneficial for agriculture and forestry sectors. Harvesting rain water will help reduce demand on water supply systems and thereby provide positive complementarities with IRBM.

3. Chapter: Agriculture Sector

Swaziland's agriculture sector is dualistic and encompasses the traditional sector and commercial sector. This is due to land tenure system in the country. Two major systems of land tenure are present in Swaziland, Title Deed Land (TDL) and Swazi Nation Land (SNL). TDL is privately owned land and is used primarily for commercial ranching, forestry or estate production of crops such as sugar cane, citrus and pineapples. It covers 46 % of the country. SNL is land held in trust by the King for the Swazi people, and covers the remaining 54 % of the country and traditional agriculture subsector is based in this land. For administrative purposes the country is divided into four districts, each of which is administered by a Regional Administrator:

- Hhohho in the north, with its administrative headquarters in Mbabane;
- Manzini in the centre, with headquarters in Manzini;
- Shiselweni in the south, with headquarters in Nhlangano;
- Lubombo in the east, with headquarters in Siteki.

Agriculture is the mainstay of the Swaziland economy and is critical for the achievement of the overall development objectives of the country. Total cultivated area (arable land and area under permanent crops) is 190 000 ha and arable land is 178 000 ha (FAO, 2005). Sugar, citrus fruit, maize, cotton, forestry, livestock and vegetables production serves both domestic and export market. Maize is the most important crop in SNL; however farmers are increasingly growing sugar cane, especially those with irrigation facilities, due to its profitability. Climate change induced dry spells and erratic rainfall patterns are affecting crop production in Swaziland. Most farmers are dependent on rainfall for crop production and are therefore vulnerable to reduced rainfall and accompanying moisture stress on crops. Irrigation can help farmers in Swaziland to adapt to changing climate and substantially improve food production.

In Swaziland, the Government set up smallholder irrigation schemes to raise smallholder incomes by linking them to markets (Dlamini et al., 2014). A good example is that of the successful Lower Usuthu Smallholder Irrigation Project (LUSIP) project, had in ten years of its implementation covered six chiefdoms with an area of 3,370 hectares under irrigation and benefitted about 20,500 community people by improving their incomes (Ibid, 2014). Another important project was the Komati Downstream Development Project (KDDP) which started in year 2000 supporting farmers in 6000hectares, financed by African Development Bank. Such irrigation projects aid in poverty reduction and economic growth in the country.

Livestock have traditionally been an important component of the agricultural industry in Swaziland. There are about 700,000 cattle, 350,000-450,000 goats, 20,000 sheep, 50,000 pigs and large number of poultry in the country (*Personal Communication*, Roland Xolani Dlamini). Livetsock is important for Swaziland as it brings in foreign exchange when imported and culturally it is considered a store of wealth.

The three technologies prioritised under the TNA were livestock and poultry selective breeding, conservation agriculture and micro and drip irrigation. In Swazi culture, cattle is a measure of wealth and to maximise production cattle are kept to their maximum age (Doran et al., 1979). Overgrazing has been a

problem since the seventies as documented by Doran et al. (1979). In 1973, UNDP set up a livestock production and extension program to address the seriousness of the overgrazing problem in Swaziland. The programme included breeding stations, feeding, and pasture improvement trials and development in marketing facilities. Breeding of cattle is an age old indigenous knowledge that farmers have been using for generations. With climate change, breeds that are sturdy and able to withstand drought conditions are much needed. The El-Nino induced drought in 2016 had caused cattle deaths of over 88,000 (Mngoma, *pers.comm*). Thus, prioritising livestock and poultry selective breeding indeed helps this sector to adapt to the changing climate.

The next technology prioritised was conservation agriculture, which is well known to aid with adaptation through improving yields, soil fertility, reducing need for irrigation and also helps with mitigation by aiding in storing below ground carbon.

Figure 7 Two young smallholder farmers using drip irrigation technology in Swaziland

Irrigation accounts for 96% of water use in the country and in the wake of climate change it is imperative that this valuable resource be efficiently used and conserved. In this regard, micro and drip irrigation as a technology is useful and was prioritised under the TNA project. The goal of efficient irrigation (micro and drip) is to supply each plant with just the right amount of water it needs, thereby reducing wastage of water. Micro irrigation systems include drip irrigation which target roots of field crops, and sprinklers, which are pressurized irrigation systems that use moving platforms or devices to simulate natural rainfall. Water efficiency for sprinklers is 50-70%, while for drip irrigation it is up to 90% and can also be used in greenhouses, nurseries, orchards and plants in containers. Both systems can be gravity fed or pressurized. Adaptation of this technology promotes sustainable management of energy, water, land, and labour. Under conditions of increased water stress resulting from climate change the benefits of the technology rises quite significantly.

Detailed description of shortlisted technologies, their barriers, measures and enabling framework is discussed below, starting with livestock and poultry selective breeding.

3.1 Livestock and Poultry Selective Breeding

3.1.1 General description of Livestock and Poultry Selective Breeding

Selective breeding is a technology that aims to improve the value of animal genetic diversity. It is the systematic breeding of animals in order to improve productivity and other key characteristics that can help them adapt better such as thermal tolerance, low quality feed, high kid survival rate, disease resistance, good body condition and animal morphology. Various methods for selective breeding exist, from high-tech and costly processes such as in-vitro fertilisation or genetic engineering to more simple low-cost techniques that rely on the selection and controlled mating of animals based on observable characteristics.

This technology can be applied to all types of livestock, including cattle, sheep, goats, pigs and chickens. This method helps in the productivity of livestock species as well as improvements in the health and welfare of livestock and other animals. The livestock and poultry produced through this method will be sturdier and can withstand shocks such as prolonged dry spells, extreme temperatures, pests and diseases. The methods of controlled mating is very simple to do and does not incur high costs. Selective breeding through controlled mating enables farmers to breed animals that are more resistant to the impacts of climate change, such as sudden changes in temperature, prolonged droughts or the appearance of new diseases. It can reduce mortality rates, increase fertility rates, and can also be used to improve the quality of livestock products such as milk and fibre. As a result, livestock producers are at a lower risk from losing animals to climate change impacts and they are also able to diversify their income-generating activities by capitalising on higher-quality dairy or fibre production.

The selective breeding programmes usually do not produce immediate improvements. Improvements are usually not seen for at least one growing season, so a livestock producer must be able to incorporate long-term planning into production management strategies. Such measures could include: (i) identifying and strengthening local breeds that have adapted to local climatic stress and feed sources and (ii) improving local genetics through cross-breeding with heat and disease tolerant breeds. One of the main limitations of this technology is that selective breeding of certain genes can run the risk of reducing or removing other genes from the overall pool, a process which is irreversible. This can create new weaknesses amongst animals, particularly with the emergence of a new pest or disease. Depending on the animal traits chosen, selective breeding may not always lead to higher productivity rates.

There are three main approaches to selective breeding:

1) Outcrossing

Mating two animals that are unrelated for at least 4 to 6 generations back is called an outcross. Outcrossing improves fitness traits such as reproductive ability, milk production, kid survivability and longevity.

2) Line-breeding

Line-breeding involves mating related animals like half-brother/half-sister, cousins, aunt/nephew, and other more distant relationships. This is usually done to capitalize on a common outstanding ancestor who appears in recent generations of the pedigree. There is a higher degree of uniformity with line-breeding than in outcrossing, and a reduced possibility of harmful genetic defects than inbreeding.

3) Inbreeding

This breeding method involved mating directly related animals, like mother/son, father/daughter, and full brother/full sister (full siblings). This method is used generally to create uniformity and pre-potency (the ability of this process to continue) and to force out latent weaknesses from the gene pool. Fitness traits are especially at risk with this breeding scheme.

Climate change will create extreme weather events, heat waves and cold waves and therefore sturdier varieties of livestock and poultry are needed. Specific advantages of selective breeding through controlled mating include low input and maintenance costs once the strategy is established, and permanence and consistency of effect. In addition, controlled mating can preserve local and rare breeds that could be lost as a result of climate change-related disease epidemics. This can be applied by a small scale farmer to a commercial livestock production facility. The technology varies and can range from simple controlled breeding to more advanced in-vitro fertilization.

Government, through the livestock extension department, educates farmers in all aspects of livestock and poultry production. Cattle production in Swaziland can be divided by breeds into a) exotic dairy cattle and b) other cattle (traditional and beef specific cattle). Production, processing and marketing of livestock and poultry is carried out by the private sector in Swaziland. The Livestock Improvement Act 2007 and supporting legislations and policies have endorsed methods that will improve productivity. Helping farm animals adapt to climate change is supported by the Government. There is need for awareness raising of this technology and Government can play a role in providing necessary information to farmers.

Benefits of this technology are many. Sturdier livestock and poultry will improve availability and quality of meat, which will boost agricultural economy. Greater production will create more jobs and improved varieties and increased production of livestock and poultry will improve incomes for farmers. With less imports of meat, the country will benefit in preserving foreign exchange. Importance for livestock production will boost the need for improved grazing land management. Increasing number of livestock will also supply dung which can be used for biogas and organic fertilizer.

Social benefits include opportunity for preserving indigenous knowledge, improved nutrition for humans and better management of land. Documentation of the indigenous knowledge of livestock keepers about animal breeds and breeding should be an integral part of the work of rural development projects, institutions and organisations because it can be a source of information about the existence of breeds that scientists have overlooked and which may have unrecognised advantages and potential. Investments in science and technology for developing new breeds and genetic types also present an opportunity for larger-scale interventions where funding is available. Improved livestock health will have nutrition benefits for people in Swaziland, which will improve health. Improved incomes of farmers will also provide them with means to improve household nutrition and health. Reduced livestock deaths have environmental benefits as livestock depends on grazing and therefore managing them will help in sustainable grazing land management. In Swaziland, the Nguni cattle and indigenous varieties have been suited for climate variability and been in production for many years. Indigenous knowledge exists about this in farmers of Swaziland. It will be relatively inexpensive and easy to spot varieties that are sturdy and implement selective breeding. Many farmers in the private sector have the means to undertake this and therefore there are many opportunities in Swaziland for this. Improved varieties of cattle have a demand in the market, as beef from Swaziland is in demand both domestically and for export. In this regard, cattle breeding ranches have been helpful.

Cattle breeding ranches are managed by Livestock Extension Service and were established to produce high quality bulls that farmers can use to improve the genetics of their herds. A secondary purpose of the breeding ranches is to provide a venue for conducting animal breeding and nutrition research. High-quality bulls produced on the breeding ranches (mainly Nguni, Brahman, Simmental and Drakensberger breeds) have been distributed to farmers by the Livestock Extension Service under the Bull Loan Scheme. While introduction of bulls of exotic breeds has led to overall productivity gains in herds being grazed on communally held SNL, there is concern that widespread interbreeding could pose a threat to the continued existence of the indigenous Nguni breed, with its unique characteristics. It is important to note that the capacity of government cattle breeding ranches is not being fully used. For instance, the Mpisi ranch has the potential to produce 75 bulls per year, but due to various technical and financial constraints, it produced only 35 bulls in 2009/10 (World Bank, 2011). Chicken rearing is done by 91% of Swazi households. The demand for indigenous poultry is increasing and indigenous poultry rearing helps improve food security and are profitable (Siyaya and Masuku, 2013). However, access to markets for farmers who rear indigenous chickens is limited.

Development of livestock and poultry in the country is supported by the following national strategies:

- The National Development Strategy (NDS) (2002) backs up the country's Vision 2020, which focuses on long term development, and provides guidelines for formulating development plans based on equitable allocation of resources. Food security, innovation and research, land use, and marketing and trade are all listed as priorities. Of particular importance to the agricultural sector, the NDS emphasizes the government's commitment to achieving equitable and rational land use with security of tenure, as well as community participation and empowerment in economic decision-making.
- The National Food Security Policy (NFSP) (2005), promotes (i) food availability, (ii) food access, (iii) food utilization and nutritional requirements, and (iv) stability in equitable food provision.
- The Comprehensive Agricultural Sector Policy (CASP) provides guidance on the policy options and measures necessary to enhance agriculture's contribution to overall economic growth. The main goal of CASP is "to give direction to the development of the sector in a harmonized and coordinated manner" and "to enhance the contribution of the agricultural sector in meeting the country's Vision 2020 and the national development goals of the NDS." Specific objectives include: (i) increase agricultural output and productivity; (ii) promote diversification, sustainable

intensification, and use of appropriate technology; (iii) assure food security; (iv) promote sustainable use and management of land and water resources; and (v) stabilize agricultural markets (World Bank, 2011).

• The Livestock Development Policy (LDP) identifies policy objectives in 12 areas specifically related to livestock development: (i) animal health and production extension; (ii) livestock marketing; (iii) processing industries; (iv) cost-recovery and commercialization of livestock development; (v) veterinary and livestock research; (vi) promotion of livestock enterprises and entrepreneurship; (vi) sanitation and meat hygiene standards assurance; (vii) national herd improvement; (viii) livestock nutrition, (ix) legislation; (x) communication; (xi) disease prevention and delivery of animal health care; and (xii) range conservation and management. The Livestock Development Policy states as an objective, "To improve the national herd through selection and breeding, research, the protection of Swaziland's indigenous gene pool and the application of internationally acceptable quality assurance measures for breeding eggs, semen, ova, embryos or tissues to prevent the spread of diseases".The LDP is comprehensive and robust, in the sense that it effectively identifies all major issues in the livestock subsector and proposes a series of practical measures to address them. However, implementation of the LDP has been slow (World Bank, 2011).

3.1.2 Cost Benefit Analysis

The costs involved in this technology are fairly low if in-vitro fertilization is not used, but rather mating of animals in mating pens are used. The costs and financial requirements will depend on the livestock species and location. However, in general controlled breeding is a low-cost technology. Where building materials such as stones are locally available and can be used to build the mating pens, an average investment would come to around US\$ 30. In areas with clay soils, adobe bricks may be used, at an average cost of US\$ 90. In many cases, cattle mesh has been the chosen alternative, with an average investment of US\$ 200 for each mating pen (Source: Climatetechwiki.org). Maintenance of cattle pens and costs of undertaking selective breeding will vary, but is generally affordable. The costs of breeding, construction of cattle pens, costs of awareness raising are to be added up, but these are offset by the gains in reduced livestock deaths and improved production.

In Swaziland, according to World Bank (2011), "The government plays a key role in providing extension services through the Animal Production Division and the Animal Health Division of the Department of Veterinary and Livestock Services (DVLS). Publicly owned and operated cattle breeding ranches provide breeding bulls to improve farmers' herds. Fattening ranches condition farmers' cattle in order to attract better market prices, thereby encouraging off-take and reducing grazing pressure on SNL rangelands".

3.1.3 Preliminary targets for technology transfer and diffusion

Preliminary targets are derived from visions of several national documents and policies regarding the livestock sector. The National Food Security Policy (NFSP) (2005), The Comprehensive Agricultural Sector Policy (CASP) and the Livestock Development Policy (LDP) promotes livestock breeding through its focus on stability for food provisioning. Furthermore, Swaziland's National Development Strategy says, "Develop cost-effective and environmentally-friendly farming technologies and disseminate through a strengthened extension services network". It further states, "Promote production of crops and livestock for domestic and international markets by both small and large scale farmers" and "Determine livestock activities to be carried out in the different ecological zones on the basis of climatic conditions". The strategy also calls for promotion of marketing of livestock.

The Swaziland Livestock Department's vision and mandate states, "To be a leader in facilitating efficient service delivery for a sustainable and prosperous livestock sector. The mandate is to equip livestock producers with adequate knowledge, skill and technical expertise on the efficient management of all resources that will ensure profitable returns and an efficient and sustainable livestock industry. The thrust is to promote commercialization of cattle, poultry, pig and goat production to ensure food security, poverty alleviation and improved living standards of the farming community. Selective breeding technology will support commercialisation. Swaziland's Constitution says, "The State shall take appropriate measures to promote the development of agriculture and industry". The Swaziland Vision 2022 and National Development Strategy (NDS) prioritises agriculture as a means to reduce food insecurity and improve nutrition security. Livestock and poultry selective breeding helps Swaziland achieve these goals through helping livestock and poultry adapt better to climate change impacts. Food security and nutrition would be improved when market access is improved for this technology. Awareness raising for farmers and training on breeding technology, enhancing capacity of Department of Livestock and conducting research to identify market gaps are suggested measures to reach these targets.

3.1.4 Identification of barriers for Livestock and Poultry Selective Breeding

3.1.4.1 Economic and Financial Barriers

Swaziland aims to equip livestock producers with adequate knowledge, skill and technical expertise on the efficient management of all resources that will ensure profitable returns and an efficient and sustainable livestock industry. The thrust is to promote commercialization of cattle, poultry, pig and goat production to ensure food security, poverty alleviation and improved living standards of the farming community. Selective breeding as a technology will help to achieve this aim and furthermore, allow for effective adaptation for this sector. Although the beef industry is well organized, there is limited coordination between production and consumers for goats and sheep. The supply chain has to be improved. For poultry, introduction of indigenous chickens has improved the production. The major economic barrier in breeding is the cost of transport for poultry farmers to go to the markets. This is particularly so for poultry farming, as noted by Siyaya and Masuku (2013). The authors undertook an economic analysis of the indigenous chickens' production in Swaziland, and explored what affects profitability of indigenous chickens' production. A sample of 147 smallholder poultry farmers trained by poultry officers on indigenous poultry production in the four regions of Swaziland were interviewed. They reported that, "the cost of breeding stock (hen and cock) costed E66.00 on average, while the most expensive cock was bought at E200.00. The

maximum price for a hen of E120.00 was reported. The average price of a cock was at E78.00, while the average price of a hen was E54.00. The average chicken price at the market was E60.00, with a range of E35.00 to E150 maximum per bird. Flea markets to which farmers sell their chickens were located 22 km away from the farmers, with a minimum of 1km to 95 km away. Farmers far away from flea markets complained of high transport costs that reduced their returns as they had to hire cars to the flea market" (Siyaya and Masuku, 2013). The high transport cause as a financial barrier can be overcome with measures of having market access in areas closer to the farmers. Authors called for research on market size and spread to determine demand patterns of indigenous chickens and gaps where new markets may help this industry.

3.1.4.2 Non-Financial Barriers

Low awareness was cited as a barrier. Stakeholders stated that in Swaziland, cattle is equated to wealth of a household. The cultural value attached to cattle is a barrier in treating livestock as a business. Stakeholders mentioned the example of Botswana, where livestock is treated as a business and sale of cattle is done at the right time to make profits. While in Swaziland, farmers delay the sale of their cattle due to the cultural mind-set of attaching them to wealth. In 2016, farmers did not sell their cattle and due to the drought, thousands (over 88,000) of cattle died. The mind-set of farmers to commercialise livestock rearing will help improve the sector. In this regard, using technologies such as selective breeding will be helpful. However, care must be taken when introducing this technology as incorrect breeding techniques may result in breeds being less tolerant to drought as they may need more feed and water. Some breeds cannot tolerate the heat and therefore caution must be exercised in choosing the right breeds. The other barrier is that of inadequate capacity for extension services. The capacity of Ministry of Agriculture's Department of Livestock needs to be improved for providing enhanced extension services and reaching out to larger number of farmers.

3.1.5 Identified Measures for Livestock and Poultry Selective Breeding

The following measures are identified for this technology.

Awareness

Measure 1: Awareness on the technology to be improved through training of farmers. This will help change mind-set of farmers to consider livestock farming as a business and use correct breeding techniques to maximise benefits for adaptation.

Markets

Measure 2: Conduct research on markets spread and gaps and improve value chain by creating new markets where needed. This will help increase breeding opportunities as farmers can buy poultry to breed from the markets.

Capacity building

Measure 3: Promote indigenous chickens by enhancing capacity of Department of Livestock for extension services. Ministry of Agriculture promotes indigenous chickens, and could benefit from scaling up.

3.1.6 Enabling Framework for Livestock and Poultry Selective Breeding

The table below gives the enabling framework for livestock and poultry selective breeding. *Table 15 Enabling framework for Livestock and Poultry Selective Breeding*

Barriers	Measures	Economic consequence	Other consequences of	
		of measures	measures	
Awareness	Create awareness	There is cost involved in	It is difficult to change	
Inadequate awareness of	through training of	providing training	cultural perceptions of	
technology amongst	livestock farmers		cattle being viewed as	
farmers leading to low	associations in the		wealth and there could	
up-take	country		be resistance to some	
			aspects of the training	
Capacity	Provide training to	Costs for training and	There could be few	
Inadequate capacity in	extension staff and	recruitment	trained personnel	
Animal Production	fill vacancies		available in the country	
Division and the Animal			to fill vacancies	
Health Division of the				
Department of Veterinary				
and Livestock Services				
(DVLS) to provide				
extension services				
Markets	A research needs to	Creating a new market	Availability of new	
High cost of travel to	be done on markets	has costs of	markets will improve	
markets reduces	and gaps where	infrastructure provision.	availability of food in	
opportunities for	new markets can be	Availability of suitable	rural areas and fetch	
breeding and profits for	created	breeds of livestock and	better prices for farmers	
farmers		poultry for breeding		
		must be ensured.		

3.2 Conservation Agriculture

3.2.1 General description of Conservation Agriculture

According to FAO (2017), Conservation Agriculture (CA) is an approach to managing agro-ecosystems for improved and sustained productivity, increased profits and food security while preserving and enhancing the resource base and the environment. CA is characterized by three linked principles, namely:

(1)Continuous minimum mechanical soil disturbance; (2) Permanent organic soil cover; and (3) Diversification of crop species grown in sequences and/or associations. Agriculture alters land forms and using tillage disturbs soil and may contribute to increased runoff and erosion. Tillage of the soil stimulates microbial decomposition of soil organic matter, which results in emissions of carbon dioxide to the atmosphere. Therefore, minimising the amount of tillage promotes sequestration of carbon in the soil, increases water retention and reduces erosion. Thus it has consequences for both climate mitigation and adaptation. With rising temperatures in the wake of climate change, there will be higher need for water for agriculture and this technology helps in water retention in soil, thus aiding in adaptation. In conservation tillage, the soil should remain permanently covered by crop residues from previous cash crops or green manure cover crops, and most of these residues will remain undisturbed on the soil surface after seeding. Maintaining soil fertility, reducing runoff and erosion will have positive climate change adaptation values for agriculture. Conservation agriculture leaves the previous year's crop residue (such as corn stalks or wheat stubble) on fields before and after planting the next crop to reduce soil erosion and runoff, as well as other benefits such as carbon sequestration. Climate change will also cause more weed growth and pest infestation and this technology reduces growth of weeds and pests, thus helping in adaptation.

CA principles can be applied to all agricultural landscapes and land uses with locally adapted practices. Very little external inputs such as agrochemicals and plant nutrients of mineral or organic origin are needed. CA facilitates good agronomy, and complemented by other known good practices, including the use of quality seeds, and integrated pest, nutrient, weed and water management, it is a base for sustainable agricultural production intensification. It also allows for integration of production sectors, such as crop-livestock integration and the integration of trees and pastures into agricultural landscapes. Stakeholders prioritised this technology as an adaptation measure for Swaziland. CA increases the ability of soil to store or sequester carbon, enrich the soil, improve soil surface stabilization, reduce leaching of nutrients, decreases evaporation and hereby improve water retention, increase yield and reduces the need for tractors to pass on farm thus reducing use of fossil fuels. Furthermore, CA reduces labour by up to 40%. In this technology burning crops and residue is avoided and it is a truly sustainable technology.

In Swaziland, CA has been practised for over 10 years, with the use of champion farmers, demonstrations and continuous extension contact training for farmers in all four regions of the country. However, most of the training and practice has been on manual / hand-operated implements such as jab planter and hoe. But mechanisation has caught on with Government led tractor system in place. CA has been promoted through the European Union and FAO funded project Swaziland Agricultural Development Programme (SADP) which began in 2009. The objectives of the 5-year programme were to improve the food security and nutrition of the vulnerable, and to help transform agriculture into a vibrant commercial sector. More than

20 000 smallholder farmers have learned to produce larger quantities of high-quality food and connect with new markets. In addition, construction and rehabilitation work in the livestock sector, water infrastructure and government services have also been top priorities for SADP. Under the programme, 800 backyard vegetable gardens have been established for vulnerable households, and 60 youth groups have been established, reaching 2,250 young people (FAO, 2017). Swaziland's Ministry of Agriculture has been supported by FAO and Cooperation of the Development of Emerging Countries (COSPE) in implementing conservation agriculture since 2002. In addition, World Vision International have also implemented similar programmes and Africa Cooperative Action Trust (ACAT) has brought out a CA Compendium and raised awareness of CA. Whilst all initiatives have successfully promoted CA, there is a need to mechanise it. This will make it attractive to a broader spectrum of farmers and thrust it into the commercial front.

3.2.2 Economic Analysis

The main cost for promoting CA would be that of purchasing a mechanised planter for the farmer. Other expenses such as labour and inputs are limited. TNA Factsheet on CA from Lebanon stated, "CA has less expenditure in capital cost (for machinery), in labour and energy than conventional agriculture. In field crops, the cost of implementing the technology is reduced to the cost of the seeder or planter (\$2000)" (Source: tech-action.org). This cost is offset by the long term savings for farmers on increase in chemical and water use to preserve soil fertility which adds to the cost of production. In South Africa, seed planters range from R2, 800 for a small planter to R37, 000 for medium sized one to R240, 000 for large scale commercial one. Swaziland's agriculture equipment's suppliers import from South Africa and other countries and have to pay an additional Value Added Tax (VAT) of 14%.

For purposes of this TNA project, smallholder farmers are targeted and hence medium sized planter is preferred which costs R42, 180 including VAT. According to FAO (2011), Swaziland has 100,000 farm households with average farm size of 1.3ha. Economic analysis is done using the experiences from the Shiselweni Piggery Farmers' Cooperative. The farmer's cooperative made a Memorandum of Understanding with Swazi Bank, and based on that, sourced funds from Central Bank to provide collateral/security for the loan taken for farmers. The Swazi Bank was able to secure the funds for collateral successfully. In the piggery project, the farmer contributes 7% of the loan and the farmer organization (cooperative) contributes 8% and Swazi bank provides the balance 85%. Each farmer got a maximum of E30, 000, which they used to buy feed for pigs, new stock for their piggery project, provide treatment for pigs and market the pork. Five farmers were able to pay back all their loan within a year and others are still paying off their loan. The plan is to expand the project to other areas and include other commodities like chicken, goats and for farming maize. The insurance for natural disasters is not covered, which is a risk factor. All farmers are trained and that is a pre-condition of securing the loan and training is provided by an accredited training provider thereby reducing risk of failure (*Pers. Comm*, Jabulani Tsabedze).

Using the model of the Shiselveni Piggery project, and combining with a subsidy programme, the recommendation is to undertake the following investments:

1. Identify 20,000 farmers who have medium sized crop fields who can be supported through this project

- 2. Train the 20,000 farmers on CA
- 3. Provide loan for 50% of cost of planter to farmer, where farmer contributes 7%, farmer association/cooperative contributes 8% and Central Bank can provide collateral of 85%. The farmer will be expected to pay back the loan through production from his/her farm.
- 4. 50% of cost of planter is to be subsidized by Government, which amounts to the value of E 18,500 per farmer, for 20,000 farmers that amounts to E370,000,000 (370million).

3.2.3 Preliminary targets for technology transfer and diffusion

The Swaziland National Development Strategy advised preliminary targets for transfer and diffusion of technology as it prioritises agriculture as a means to reduce food insecurity and improve nutrition security and commercialisation of agriculture in Swazi National Land. Furthermore, Swaziland's Constitution says, "The State shall take appropriate measures to promote the development of agriculture and industry". The technology measures of providing subsidies for planters and creating awareness of CA through training are addressing this vision.

3.2.4 Identification of barriers for Conservation Agriculture

3.2.4.1 Economic and Financial Barriers

The major financial barrier identified by stakeholders was that the cost of mechanised planter was too high and famers wanted to take advantage of the Government's tractor schemes (where farmers can rent tractors for their use as subsidised rates) and use planters to reduce labour and increase production. *Table 16 Economic and Financial Barriers for Conservation Agriculture*

Barrier	Explanation	Effects
Cost of planter is high	This is due to high interest rate (around	Farmers may not afford to buy
	14%) to borrow money from bank and	planters and hence uptake of CA
	cost of importing from South Africa	will be low.
	(14% VAT is added to the cost)	
	According to Manyatsi and Mhazo	
	(2014) hardly any CA equipment is	
	manufactured in Swaziland, they are all	
	imported.	

3.2.4.2 Non-Financial Barriers

There are over 30 CA demonstration sites established in Swaziland with the help of close to 300 farmers (FAO, 2011). Yet, stakeholders say that awareness remains low and many farmers are yet to take up this technology. Hence, awareness remains a barrier for scaling up CA. Below are barriers listed along with their explanation and effects. Furthermore, capacity building needs to be done for extension staff and ways to machanise CA using mechanised planters is suggested.

Barrier	Explanation	Effects	
Awareness	Awareness can be improved in Swaziland	Due to inadequate awareness	
Inadequate awareness	through setting up more demonstration sites	farmers continue traditional	
	can be set up to up-scale this technology. ways of farming.		
Capacity	Extension workers need to be trained on this	Extension work helps scale	
Capacity building of	technology and this can be doe through	can be doe through up the technology use	
extension workers	setting up demonstration sites.		
Technology is lagging	Mechanisation is needed for the technology	The technology is not scaled-	
behind due to inadequate	to be up-scaled, which is availability of up to desirable level		
mechanisation efforts	mechanised planters.		

Table 17 Non-Financial barriers to adoption of Conservation Agriculture

3.2.5 Identified Measures for Conservation Agriculture

The following measures are suggested for scaling up CA in Swaziland.

Awareness

Measure 1: Create awareness amongst farmers and extension staff through setting up demonstration sites and conducting site visits.

SWADE has produced a CA manual which provides all information on how to set up a demonstration plot and principles of CA (SWADE, 2013). This can be used by implementers for awareness raising.

Financial

Measure 2: Provide subsidies of 50% for planter equipment to 20,000 farmers.

3.2.6 Enabling Framework for Conservation Agriculture

Table 18 Enabling Framework for Conservation Agriculture

Barriers	Measures	Economic consequence of	Other consequences of
		measures	measures
Low	Create awareness amongst	Setting up demonstration	If demonstration plots
awareness of	farmers through setting up	plots would cost funds. But	are not well managed, it
CA	demonstration sites	this can be covered through	can discourage
technology		existing NGO projects	technology adopters.
		where CA is being	
		promoted. Thus synergies	
		are attained.	
	Conduct site visits to	Site visits would require	When budgets are
	demonstration plots	transportation and	inadequate there could
		refreshment costs to be	be low priority for this
		covered. This should be	activity, however, to
		covered within Ministry of	make it sustainable

		Agriculture's extension	entrenching this within
		budgets.	the ministry is essential.
	Training of extension	These have to also be part of	Budgets must be
	workers.	the Ministry of	planned to incorporate
		Agriculture's budget. The	this. If not, it will
		CA manual developed by	remain low priority.
		SWADE can be used in	
		training sessions.	
High Cost of	Provide subsidy of 50% to	Cost amounts to	There could be people
equipment	purchase planters for 20,000	E370million (see economic	who take advantage of
	farmers	analysis)	the subsidy and
			purchase equipment for
			resale. This can be
			avoided by monitoring
			the farmers who are
			beneficiaries.
1	1	1	1

3.3 Micro and Drip Irrigation

3.3.1 General description of Micro and Drip Irrigation

This technology contributes to improving food security by enhancing food production. Both drip and sprinkler irrigation systems use water efficiently and therefore save water by reducing water losses. Water is also distributed more evenly across crops helping to avoid wastage. Both systems increase crop yield and allow for various types of crops including row, field and tree crops that are grown closely together, such as cereals, pulses, wheat, sugarcane, groundnut, cotton, vegetables and fruits. Swaziland is a mountainous country but has varying topographies suitable for agriculture. Both drip and sprinkler irrigation technology is well adapted to a range of topographies and is suitable for all types of soil, except heavy clay. Soluble fertilizers may be used in sprinkler systems. Since less water is used at a time, there is less risk of soil erosion because soil disturbance is low. There are secondary benefits from improved crop productivity such as income generation, employment opportunities and food security.

Sprinkler irrigation is a method by which water is distributed from overhead by high-pressure sprinklers, sprays or guns mounted on risers or moving platforms. A sprinkler irrigation system typically consists of a pump unit, pipes, lateral delivery system and water emitting devices. Mechanised and manual systems are existing. A wide range of sprinkler systems is available for small and large-scale application. The technology that is prioritised here is micro sprinkler system which is more efficient than normal sprinklers. Micro irrigation using spray sprinklers have a relatively high energy demand. Regular maintenance inspections are needed to maintain system effectiveness. Spray-sprinkler systems may require the land to be levelled for the systems to work, which is an additional cost. There is a risk of sabotage, vandalism and theft for sprinkler and drip systems.

Drip irrigation is based on the constant application of a specific and focused quantity of water to soil crops. A drip irrigation system typically consists of pumps or pressurised water system, filtration systems, nutrients application system, backwash controller, pressure control valve, pipes, control valves and safety valves, poly fittings and accessories and emitters. A wide range of components and system design options are available. The wetting pattern of water in the soil from the drip irrigation tape must reach plant roots. Emitter spacing depends on the crop root system and soil properties.

Maintenance of the system mainly relates to regular cleaning of the component parts. Seals on pipes and sprinkler nozzles should be checked to avoid water seepage. During periods when the equipment is not being used, it is recommended to store component parts in a cool, dark place. When installing micro irrigation and drip irrigation, one must take note of the following factors:

- The type of crops to be cultivated and their water requirements throughout the growing season;
- Land tenure issues and the shape and size of the field, as this will determine the range of suitable technologies, investment and labour requirements;
- Topography, in particular the location and elevation of the water source relative to the field, land slopes and uniformity;

- The water rights and type of water source, whether it is surface water or groundwater and if it is available in sufficient quantity from a locally accessible source. A clean supply of water free of sediment is required to avoid blockage in sprinkler nozzles and crop spoilage;
- Available labour force. Where skilled labourers are not available on location, local farmers will require training to install, maintain and repair the various components of the sprinkler system;
- The soil profile. Sprinkler irrigation technology is best suited to soils with high infiltration rates so that ponding and surface runoff can be avoided. The application rate of the sprinkler system must therefore be matched to the infiltration rate of the most restrictive soil in the field;
- Energy requirements of different systems, including the manufacturing, transportation and installation of the various systems. The location of the water source will also affect the need for energy for pumping;
- Social aspects such as local preferences, capacity to maintain the system, implications for labour requirements and how these may affect different members of the community;
- Financial aspects of the project and funds for maintenance;
- An understanding of existing health risks is crucial to avoid schemes that may promote water borne diseases; and
- A small environmental impact assessment should be conducted to fully understand potential impacts of drainage and diverting water resources, amongst others.

Swaziland has several institutions that help manage water resources including for irrigation and these include:

- Water user associations are at community level, responsible for managing water systems;
- The Water Resources Branch, within the Ministry of Natural Resources and Energy, manages water for irrigation;
- Komati Project Co-ordination Unit, within the Ministry of Natural Resources, manages water in Komati River;
- Small Irrigation Section (also referred to as a Unit) within the Ministry of Agriculture caters for small-scale farmers including small scale sugar growers, providing design work and extension mainly on irrigated vegetables;
- The Rural Water Supply Branch (RWSB) has responsibility for rural water supply and falls under the Ministry of Natural Resources and was setup with donor funding and NGO support during the United Nations Decade of Water and Sanitation;
- The Water Services Corporation, within Ministry of Housing and Urban Development (privatized in 1994) facilitates better planning, budgeting, and overall management of urban water supplies;
- The sugarcane irrigators and the Swaziland Sugar Association (based in Simunye) have contributed towards the development of water resources legislation and together have built up considerable levels of expertise in water resources management; and
- The Swaziland Komati Development Project (SKDP) office which is located in Tshaneni, in the northern part of the lowveld.

The Government of Swaziland has identified the development of smallholder agriculture from subsistence farming to commercialization and intensification farming as the main element in its aims to alleviate

poverty. Irrigation plays an important role in achieving this and is a priority for the Government of Swaziland. Improving irrigation has been mentioned as a priority in various national policies and documents including the National Strategy and Action Plan.

Climate change is affecting rainfall patterns and reduction in precipitation in some areas. By its design and working principle the drip irrigation system best meet the environmental, energy-efficient and resourcesaving requirements. Drip and sprinkler systems are a means for climate change adaptation as they aid in sustainable water use and management, thereby increasing productivity and strengthening the adaptive capacities of people that are heavily dependent on agriculture. When faced with water scarcity, sprinklers and drip irrigation systems allows for efficient use of water and represent an adaptation strategy against scarcity of water.

Other advantages of using drip irrigation technology for agriculture include:

- Increase food productivity helps improve nutrition and thereby health;
- Saving of labour provides farmers with time for leisure;
- Lowered water withdrawal from ground water resources, particularly during more sensitive dry months, drip technology prevents depletion of ground water table and pollution from infusion of saline and other contaminants;
- Increased use efficiency of chemical fertilizer through fertigation prevents resource waste and development of water pollution problems such as eutrophication;
- Drip irrigation reduces crop disease pressure as foliage are kept dry;
- Agricultural production will increase leading to decrease in the dependence of imported agricultural products at local markets;
- The technology can be employed in combination with other adaptation measures;
- Intensive agriculture with mixture of crops is possible using this technology and year round production is enabled; and
- It contributes to efficient water use, reduces requirements for fertilisers and increases soil productivity as well as due to fertigation and reduced need for weed control, requires less labour.

Micro sprinklers (also known as: spray jets, micro sprayers, misters) are a combination of surface spray irrigation and drip irrigation and are rated by flow rate, wetting diameter or radius. They operate at low pressures but create a larger wetted area than drip irrigation and are used when low volume overhead irrigation is desired, and for areas where drip irrigation are not practical. The micro sprinklers and micro sprayers deliver water through micro tubing to a series of nozzles attached to risers, and have small to medium sized droplets with good uniformity of coverage and lower precipitation rate, allowing longer watering time with less runoff. Micro sprayers are used extensively in agriculture using one micro sprayer per tree and under the tree canopy. Micro-Spray Irrigation provides many of the same benefits as drip irrigation.

Both the drip and micro irrigation technology is suitable for various users from small scale to large scale and can be low-cost gravity-fed or automatic and pressurized. Suppliers are available locally or equipment can be imported from South Africa. The irrigation potential for the country, based on the physical land capability and water availability, is estimated at 93,220 ha. Currently about 10 large irrigation schemes (> 500 ha) occupy 67 % of the irrigated land, medium irrigation schemes (50,500 ha) and small irrigation schemes (< 50 ha) occupy 20 % and 13 % of the land respectively. This technology can be implemented within a short period, but land preparation and levelling may be needed. Technical skills for installation is not adequately available in Swaziland, although suppliers import this from South Africa and sell it in the country. This technology has already been used in Swaziland and is widely accepted by stakeholders. Development partners such as African Development Bank, International Fund for Agriculture Development (IFAD), European Commission and UNDP have supported use of this technology in Swaziland.

3.3.2 Economic analysis

Costing for drip irrigation kit is E 862.98 for gravity drip kit and E 1,026 for a 100litre tank, which amounts to **E1, 888** for a $100m^2$ small crop field. The gravity drip kit contains $12mm \ge 0.81/hr \ge 0.3m$ dripper pipe, valve and filter between tank and drippers, 16mm pipe for sub-main and connectors. Prices were obtained from averages of three suppliers in South Africa.

Item	Number/pack	Cost (E)	Total cost
Assembled microjets	1000	4530 per pack of 1000	4350
Tube fittings	1000	6000 per pack of 1000	6000
Rigid riser with adapter	1000	2904 per pack of 1000	2904
Choke	100	18.50 each	18.50
Complete stake assembly	100	13.63 per 100	13.63
Flexible PVC tube	100m length	3.74 per m	374
Connector	20	2.42 each	48.40
Tee pieces	20	38.82 each	776.40
Reducing elbow	20	3.19 each	63.80
End plug	20	2.63 each	52.60
Flow control	20	39.16 each	783.20
Tap connector	20	11.39 each	227.80
Hose tail	20	7.00 each	140
Hose clamp	20	7.01 each	140.20
Vacuum breaker	20	43.32 each	866.40
		TOTAL	16,758.93

Costing for a micro irrigation system (spray sprinkler) is shown in the table below. *Table 19 Cost calculation for micro irrigation kit*

Prices were obtained from Microjet (<u>https://www.microjet.co.za/secure/</u>), South Africa and VAT was added.

Providing subsidies for 20,000 selected farmers chosen representatively from all regions would entail the costs as indicated below. Criteria for selection of farmers would be that they are small to medium sized farms and able to afford the balance amount after subsidy to purchase the irrigation kits. This is to ensure their commitment and to enable monitoring of their progress so that they do not resell the equipment.

Assuming equal number of drip and micro irrigation kits, the total cost is as below. 10,000 drip irrigation kits would cost E1, 888.98 x 10,000 = E18, 889,800 10,000 micro irrigation kits would cost E 16,758.93 x 10,000 = E167, 589,300

If 50% subsidy is provided, the costs would be a total of E 186,479,100 (186million). Subsidy vouchers can be given to farmers, and equipment obtained via local supplier. The project can be phased in five years with annual budget of approximately E37million given out as subsidies annually. Selection of farmers can be done using existing knowledge from projects being implemented on the ground by development partners and NGOs. As much as possible farmer groups need to be supported.

Additional costs will be needed to provide necessary capacity building activities for local farmers. However, this can be recovered from profits of higher yield and quality of crops. Micro-irrigation can increase crop yield by 30- 40 %. The harvest increases by 30-40% times, thereby increasing yields, food security and incomes. Livelihoods of farmers will be improved and they will be better able to adapt to climate change. It improves water use efficiency and crop yield and quality by providing year round production, more efficient water use and less cost of water.

Maintenance of irrigation equipment needs skilled labour and use of this technology creates jobs for the skilled labour. The technology can facilitate gainful employment of the farm family labour throughout the year. The technology can facilitate participation of women in farming through the operation of the system and carrying out regular maintenance operations. The overall time spent is decreased as a result of less time spent on irrigating crops and this time saved can be used for other income generating activities. Thus, it contributes to diversification of economic activities priority of the country. It also leads to improvement of economic condition of rural population and leads to efficient use of resources such as land, water and fertilizers. Furthermore, the technology contributes to food security priority by increasing productivity and leads to increase in income of rural population as well as reduces migration to urban areas from rural communities.

3.3.3 Preliminary targets for technology transfer and diffusion

The Swaziland National Development Strategy states that the country must raise its capability of the agricultural sector to generate a higher volume of goods and services for given factors of production, without destroying the environment. This includes "efficient water resource management and usage" and in this regard, drip and micro irrigation is a good technology. The strategy also calls for expansion of small holder irrigation. As a strategy to end poverty the documents says, "Promote irrigation-based agricultural production among rural households". This is in alignment with Swaziland's Intended Nationally Determined Contributions (INDC) document, which has emphasised micro irrigation as a water efficient

technology for irrigation contributing to climate change adaptation. This technology (micro and drip irrigation) is supported by the National Irrigation Policy (2004). The policy provides guidance regarding the measures that must be adopted in order to increase the national irrigated area and to improve agricultural water management and existing irrigated agriculture thereby adding increased value to the productivity of labour and natural resources in Swaziland. Furthermore, this target is also aligned with Swaziland National Climate Change Strategy and Action Plan. The measure of promoting manufacture of drip and micro irrigation kits, creating awareness, providing training to farmers and subisiding irrigation kits will help address these targets.

3.3.4 Identification of barriers for Micro and Drip Irrigation

At the stakeholder's workshop of BAEF phase, problem and solution tree method was used for developing measures and brainstorming was done to list barriers for this technology. The main disadvantage of this technology is that initial investment cost associated with pumps, pipes, tubes, emitters and installation is higher than other irrigation systems. Heavy rainfall episodes may affect drip systems. When farms use mechanized production such as tractors, it is difficult to combine with drip system. Root development may be restricted by the limited soil area wetted. This technology requires a clean source of water and, this is a challenge when rainfall is becoming less predictable and water sources are affected by siltation. The technology has some technical limitations and disadvantages. No matter how clean the water looks, a water quality analysis should be completed to determine if precipitates or other contaminants are present that could affect operation of the irrigation system, especially for drip irrigation. The technology for automated and mechanized systems is expensive and needs high amount of initial investment. Some farmers may be put off by the fact that there may be limited market for repurchased (second hand) equipment. Drip irrigation equipment can only be used when field conditions are right. Technical conditions such as soil clay presence or steep slopes can increase implementation and maintenance costs or affect drip system efficiency. Furthermore, with climate change affecting water resources, there could be uncertainty in availability of water for irrigation, which may discourage investment in this technology for some. Insufficient skills for installing drip irrigation equipment and those being expensive initially are also barriers.

3.3.4.1 Economic and financial barriers

Stakeholders listed economic and financial barriers (see table below). The capital costs of buying and installing the irrigation equipment and costs of maintenance are not affordable to many. Since highly skilled labour is needed for installation, operation, storage and movement of irrigation systems, this adds to the costs. The high capital cost is due to few suppliers available for this technology. Often the technology has to be imported from South Africa and transportation to remote areas is costly. Furthermore, the high interest rate for borrowing money (15-17%) and need for collateral as asked by banks, make it difficult for farmers to get loans to buy this technology. Furthermore, in the wake of climate change, farmers have unreliable yields and therefore may not be able to pay back the loans on time. As a result, there are few adopters of this technology and inefficient ways of irrigation contribute to wastage of water. Those who rely on rain fed agriculture have unstable yields and this leads to food insecurity and low incomes for some farmers.
The model of sourcing funds as farmer groups through banks, such as seen in the Shiselveni Piggery project has to be explored. Subsidising irrigation kits for selected farmers can help uptake of this technology.

Figure 8 Participants at the stakeholder workshop brainstorming on barriers for micro and drip irrigation technologies in Swaziland

Table 20 List of economic and financial barriers, barriers, costs for individual and effects of the barriers

Barrier	Cost for individual	Remarks	Effects
High capital cost of	Cost of a micro or drip	Farmers may not be able	Due to high costs,
micro and drip	irrigation kit depends on size	to afford the costs and	there would be fewer
irrigation kits	of farm, topography and	the system has to be	adopters of this
	location of farm.	installed by skilled	technology. Farmers
		personnel, which also	may depend on rain
		entails cost.	fed farming, which
High cost of	Availability of affordable	Banks may not tend to	can have unreliable
borrowing funds	finance is also a barrier, as	fund an individual	crop yields, thereby
from the bank for	bank loan interest rates range	farmer due to risk	leading to food
purchase of this	from 15-17%.	involved unless	insecurity and low
technology		collateral is provided.	profits.
Cost of skilled	If skilled labour is not	If unskilled people	
labour needed for	available nearby, farmer has	handle the system it can	
installation and	to arrange for transport costs	get damaged leading to	
maintenance	for labour to come from far	further loss for the	
	distances.	farmer.	

Table above gives a list of economic and financial barriers for micro and drip irrigation technology.

3.3.4.2 Non-financial barriers

Non-financial barriers include barriers related to legal and regulatory framework and weak technical knowledge and skills for this technology (see table below). There is no legal instrument in Swaziland forcing people to use water efficient technologies and there are lack of incentives for efficient use of water. Furthermore, there is no Irrigation Act that can control and regulate methods of use of water for irrigation. In Swaziland, there is inadequate technical skills to install and maintain micro and drip irrigation systems. This is due to low demand for the technology, as there are no manufacturing plants that manufacture these irrigation kits in the country. The poor investment climate in Swaziland may be one reason and the other reason may be the low demand and the presence of South Africa nearby where suppliers are plentiful, making it less attractive for investors to invest in Swaziland. Curricula of technical colleges does not include micro and drip irrigation in detail and with practical applications, hence there are few skilled people who know this technology. As a result, the cost of maintenance of the system is high, as skilled people may have to come from far distances and this may contribute to reduced profits for smallholder farmers. When irrigation equipment get faulty and suffer from poor maintenance, it affects crop yields and thereby profits of farmers.

Other barriers include the unsuitability of this technology for all crop types. Crops that require flood irrigation and those that need ploughing may not be suited for this technology. Crop rotation and intercropping may not favour use of this technology, especially when using static irrigation systems. The type of soil and water available also affects use of this technology. When there is high quantity of clay and silt the drip irrigation kits may get clogged. There is also inadequate technical skills in determination of moisture in soils and detecting mechanical faults in equipment. Also, there are cultural barriers where farmers are used to wetting the soil and be able to visibly see the moisture on the soil, may find drip irrigation to be derisory as only a small drop of water is visible on the outside (see table below).

Barriers	Explanation	Effects	
Legal	There are no laws that enforce	With climate change, water stress is likely to	
Lack of legal	efficient use of water for irrigation in	be experienced in the country. Inefficient use	
instruments	Swaziland.	of water for irrigation will contribute to	
for		worsening of water scarcity.	
enforceability			
of this			
technology			
Capacity	There are few skilled people who can	The cost of using this technology increases	
Inadequate	install and maintain micro and drip	when skilled people have to travel far	
skills	irrigation equipment.	distances to reach the farmer.	
Awareness	Farmers are used to seeing the wet soil	There could be few adopters of this	
The mindset	around the roots of crops and as drip	technology if this barrier is not addressed. The	
of	irrigation does not wet the soil	mindset of farmers can be changed through	
assosicating			

Table 21 Non-Financial Measures for improving use of micro and drip irrigation in Swaziland

wet soil with	excessively, they do not feel it	site visits to farms where drip kits have been	
irrigation	sufficiently waters their crops. used successfully.		
Technical	Not all crops could use this	Some farmers who wants to adopt crop	
Not suitable	technology. The technology limits	rotation and intercropping as well as regular	
for all crops	crop rotation and intercropping and so	l so ploughing of land may find this technology	
	may not be favourable for some	not useful and therefore adopt less efficient	
	farmers.	ways of irrigation.	

3.3.5 Identified Measures for Micro and Drip Irrigation

Based on the stakeholder consultations, the consultant's own knowledge and international experiences, the following measures were identified for micro irrigation technology. These were further prioritised under Chapter 5.

3.3.5.1 Economic and financial measures

Measure 1: Tax cuts for local manufacture of drip and micro irrigation kits.

Tax cuts for local manufacturers will be an incentive for producing micro irrigation equipment in the country. Once supply is increased through domestic manufacture, the costs of this technology will fall and transport costs will also be lower compared to importing from South Africa.

Measure 2: Subsidize drip and micro irrigation kit for 20,000 farmers. Government can subsidise micro and drip irrigation kits (by 50%) for farmers and encourage purchase of kits by farmer groups. It may be easier to get bank loans when farmers are organized as groups. Farmers Associations or Cooperatives trained in using this technology could be encouraged to pool transport to procure the equipments and thereby bring down their costs.

Figure 9 Participants developing problem and solution trees at the BAEF workshop

3.3.5.2 Non-financial measures

Legal

Measure 1: Set up an Irrigation Act which should contain incentives for efficient use of irrigation water and fines and penalties for wastage of water.

Capacity

Measure 2: Capacitate the National Water Authority and Agricultural extension services through providing training to staff, providing improved facilities and information technology infrastructure. The National Water Authority is the authority that can implement and monitor efficient use of water. Extension services can help create greater awareness and up-scale this technology.

Measure 3: Create a pool of skilled labour through providing training at vocational schools on drip and micro irrigation installation.

Awareness

Measure 4: Create awareness of the benefits of drip and micro irrigation technologies. Changing cultural beliefs of associating irrigation with wet soil (visible to farmer) can be addressed through site visits to farms where the technology is used. Awareness raising can also be done through media and farmers shows.

3.3.6 Enabling framework for Micro and Drip Irrigation

The table below gives the enabling framework for micro and drip irrigation in Swaziland.

Barriers	Measures	Economic consequence	Other consequences of
		of measures	measures
Financial	Provide tax cuts for	Loss of tax revenues for	Increased supply of
High capital cost of	local manufacture of	Government, but this	irrigation kits due to
micro and drip	irrigation kits. The	will be offset by the gains	availability of local
irrigation kits	recommendation is to	in efficient use of water.	manufacturers will bring
	not tax the drip and		the price down. Transport
	micro irrigation kits at		costs will be much lower
	all.		than importing kits from
			South Africa and hence
			they will become more
			affordable for Swazi
			farmers. This may help
			improve adoption of this
			technology.
Capacity	Training to be	Cost of training may be	Training farmers as a group
Highly skilled labour	provided to Farmers	borne by the Government	may allow for
needed for	Associations and	or funds sought from	collaborative work, where
installation and	targeted training at	development partners	farmers may pool transport
maintenance			to buy irrigation kits,

Table 22 Enabling framework for micro and drip irrigation in Swaziland

	vocational training centres	T	thereby economising on their investments.
There are few skilled people who can install and maintain micro and drip irrigation equipment	Targeted training on drip and micro irrigation installation at vocational schools. Practical demonstrations can be conducted in farms and opportunities for youth to volunteer may be	The Government should fund this through internal budgets or with funding from development partners.	The cost of using this technology increases when skilled people have to travel far distances to reach the farmer.
Capacity of National Water Authority needs to be enhanced to enforce efficient irrigation equipment are used	provided. Training for staff of National Water Authority Improving office infrastructure Support in developing social media messaging and use of information technology by the authority	Internal Government Funds may be used and support of development partners may be used for provision of training and support to the authority.	This is a long term investment which will be beneficial for the country.
Legal There are no laws that encourage efficient use of water for irrigation in Swaziland.	Irrigation Act to be developed incentivising efficient irrigation technologies for water stressed areas	Developing a new Irrigation Act is a costly process and must be borne by Government with support from internal funds or funds from development partners.	The costs will be offset by funds received from fines for those who are non- compliant and savings from efficient water use.
Awareness Farmers want to see soil wet near the roots of crops and do not feel drip irrigation	Awareness raising session with farmers and demonstration plots are to be made to change mind-set of farmers.	The Government should fund this through internal budgets or with funding from development partners.	There could be resistance to changing mind-sets and hence traditional authorities must be involved who could influence the communities.

sufficiently waters	Incorporating this		
their crops.	technology into		
	curricula of tertiary		
	education will address		
	this to some extent.		
Technical	Awareness raising on	Incorporating this	Adoption of the technology
	suitable crops that be	information into	may not be high amongst
Not all crops could	grown using this	curricula of tertiary	farmers who want to follow
use this technology	technology	education.	crop rotation and
(for example rice			intercropping methods.
that needs flood			
irrigation). The			
technology limits			
crop rotation and			
intercropping and so			
may not be			
favourable for some			
farmers.			

3.3.7 Linkages between barriers and complementarities between technologies in Agriculture Sector

Inadequate access to finance is a hindrance for adopting these technologies. The weak capacity of the agricultural extension services affect all three technologies. It is recognised that low awareness affects all the three technologies and when awareness raising is done, there is opportunity for integrative approach so that all technologies are covered. Another root cause of barriers in adoption of the technologies is inadequate skilled personnel for example to install drip and micro kits, inadequate trained farmers who could train other farmers on conservation agriculture and livestock and poultry selective breeding. There is opportunity for a wholistic training programme to cover more than one technology and thereby helping the sector to up-scale all three technologies. When developing proposals for promoting any of these technologies, integrating more than one technology into the proposal will help generate concerted effort.

4. Chapter: Forests and Biodiversity Sector

Although a relatively small country with a land area of 17,364 km², Swaziland is rich in biodiversity with an inordinately large plant and animal diversity. The cultural and economic significance of biodiversity in Swaziland is high. Besides a large population depending on natural resources for subsistence income, many livelihoods are natural resources based in Swaziland, including those that trade medicinal plants and those who work in the plantation forestry sector. The diverse flora and fauna of Swaziland is entrenched in Swazi culture and used in various traditional ceremonies including the reed dance, the Kingship ceremony, traditional attire, traditional hunting, and burial rituals (Matsebula, 1988).

Despite forests and biodiversity being of supreme importance for the country, these resources are under threat. According to Swaziland Environment Authority (2014), "A total of 4,280 km² of biodiversity rich ecosystems have been converted to industrial timber plantations, sugarcane plantations and urban areas. The main pressures on Swaziland's biodiversity include:

- Conversion of natural habitats to others land uses;
- Invasion of habitats by alien species with the country's protected areas;
- Rapid expansion settlements and urbanization into biodiversity rich areas;
- Indiscriminate use of fires destroying ecosystems and altering habitats;
- Climate change; and
- Unsustainable use of natural resources".

Under the TNA, for the agriculture sector, technologies of Agroforestry, Conservation of Genetic Resources and Invasive Alien Species (IASP) were prioritised. The IASP management was discussed in detail at the BAEF workshop because it is an important area for the country as the country declared an emergency with regard to IASPs in 2005. However not much funds have been allocated for managing this. Studies have been done to identify the IASP species and published on Swaziland National Trust Commission (SNTC) website, however actual work on the ground to uproot and remove/destroy IASPs have lacked budgetary support. Next, we look at each technology and analyse their barriers, starting with agroforestry.

4.1 Agroforestry

4.1.1 General description of Agroforestry

Agroforestry helps restore agro ecosystems degraded due to lack of organic matter from agricultural intensification and poor ecosystem management. It is a land-use practice that encompasses planting of trees along with crops and also keeping livestock in the same field. This practice helps improve soil fertility. The crops can be grown together at the same time, in rotation, or in separate plots when materials from one are used to benefit another. The trees help in holding the soil, to increase fertility through nitrogen fixation, or through bringing minerals from deep in the soil and depositing them by leaf-fall, and to provide shade, construction materials, foods and fuel. In addition to adaptation benefits, agroforestry also has a function of carbon sequestration.

Agroforestry has many advantages. It is a technology that improves fertility of soil and thereby productivity of land. It provides multiple benefits including provision of firewood, organic materials that can be used as natural fertilisers, provision of forage, improvement in soil fertility and improve water flows as soil structure is improved. Crops planted along with trees such as *Acacia albida* provide higher yields. Agroforestry helps the farmer have income for the whole year as they can now derive construction materials (wooden poles) and fuel wood and reduce needs for purchased inputs such as fertilizers.

There are some disadvantages to this technology. Agroforestry systems require considerable management. Incorporating trees and crops into one system can create struggle for space, light water and nutrients and can hamper the use of tractors in the field as there are trees growing in between the crops. It is important to manage the land effectively to reduce the competition for resources and maximise the ecological and productive benefits. Yields of cultivated crops can also be smaller than in alternative production systems, however agroforestry can reduce the risk of harvest failure.

Generally, agroforestry systems can be categorised into three broad types: agro silviculture (trees with crops), agri silvipasture (trees with crops and livestock) and silvo pastoral (trees with pasture and livestock) systems. Agroforestry practices include:

- Alley cropping: growing annual crops between rows of trees;
- Boundary plantings/living fences: trees planted along boundaries or property lines to mark them well;
- Multi-strata: including home gardens and agro-forests that combine multiple species and are particularly common in humid tropics such as in South East Asia; and
- Scattered farm trees: increasing a number of trees, shrubs or shaded perennial crops (such as coffee and cocoa) scattered among crops or pastures and along farm boundaries.

It is important to plan the features of soil erosion control, earthworks, and gully maintenance, plan spacing of fruit trees according to final spacing requirements and plan a succession of annual or short-lived perennials beginning with the most shade tolerant for the final years of intercropping. To plan for the use of trees in agroforestry systems, considerable knowledge of their properties is necessary. Desirable

information includes the uses, the climatic adaptations of the species, including adaptations to various soils and stresses; the size and form of the canopy as well as the root system; and the suitability for various agroforestry practices. The selection of crops also requires knowledge of uses, adaptation, and market opportunities.

Agroforestry can improve the resilience of agricultural production to current climate variability as well as long-term climate change through the use of trees for intensification, diversification and buffering of farming systems. Trees have an important role in reducing vulnerability, increasing resilience of farming systems and buffering agricultural production against climate-related risks. Trees are deep rooted and have large reserves, and are less susceptible than annual crops to inter-annual variability or short-lived extreme events like droughts or floods. Thus, tree-based systems have advantages for maintaining production during wetter and drier years.

Agroforestry is part of climate smart agriculture which is being promoted by the Ministry of Agriculture, however, up-take is still slow. LUSLM project has supported 689 households with orchards and agroforestry. Land rehabilitation and agroforestry demonstration supported by GEF, IFAD and SWADE were done in 100hectares in Swaziland (IFAD, 2014). There are also unconventional ways in which agroforestry is done connecting it with tourism. In Swaziland, the Khula Tree Project, an initiative of "All Out Africa" (a tourism and volunteering organization) undertakes indigenous tree planting and growing and encourages the establishment of local small nurseries as a livelihoods initiative in the rural areas. The trees they grow are from seeds collected from wild indigenous trees (All Out Africa, 2017). According to stakeholders, there is need for creating awareness amongst NGOs in Swaziland to up-scale this technology.

Manyatsi and Mhazo (2014) states that agroforestry practises in Swaziland include planting beneficial trees such as fruit trees. Fruit trees such as avocadoes, bananas, peaches were common followed by citrus (oranges, naartjies, and lemons), guava, mango, mulberry, and papaya. "The total number of fruit trees planted on a single homestead was generally less than 10, except in cases where bananas were planted" Allen (1990). "The most common planted fruit trees are avocadoes, peaches and mangoes to name a few. They are planted in arable fields adjacent to homesteads where they can be looked after and protected from unauthorised harvesting. The indigenous fruit trees that are left to grow in grass filter strips between ploughed lands include Marula (*Slerocarya birrea*), water berries (*Syzigium cordatum*), figs (*Ficus spp*) and Velvet-Wild-medlar (*Vangueria infausta*)" (Manyatsi and Mhazo, 2014).

In Swaziland, trainings in Agroforestry was held in July 2011. The selected farmers were grouped according to the regions where they came from and the workshops were held in the regional offices so that the farmers could not travel long distances to the training areas. The training's were organized by the Forestry Department of the Ministry of Tourism together with the Extension Officers from the Ministry of Agriculture (*personal communication*: Wilfred Mbhekeni Nxumalo). The training included theory and practise techniques of intercropping, improved fallow, alley planting, live fence, fodder production and woodlots. There is renewed interest in fodder production for livestock farming and so here is a link between the two sectors. Feed and fodder production for livestock feeding is an important aspect for agriculture and agrofroestry technology can help in this regard (*personal communication*: Roland Xolani Dlamini).

Other benefits to agroforestry include diversification of economic activities, diversification of agricultural revenues, increase in yield from conventional agricultural systems, reclamation of fragile or marginal lands, increase in plant diversity, decrease in wind and water erosion, improvement in soil fertility and carbon sequestration amongst other.

Agroforestry is supported by the following legislations in Swaziland as follows:

• The Kingdom of Swaziland Constitution Act 2005

The Constitution Section 210 (2) provides that the State shall protect and make rational use of its land, mineral, water resources as well as it fauna and flora, and shall take appropriate measures to conserve and improve the environment for the present and future generations.

• The Natural Resources Act, 1951

This Act supports conservation and improvements of the natural resources and for other matters incidental thereto.

Agroforestry also helps Swaziland meet its commitments to 2020 Aichi Biodiversity Targets and contributions to the Sustainable Development Goals. Furthermore it is in alignment with Swaziland's National Development Strategy and Vision 2022 which supports environment friendly agriculture.

4.1.2 Cost Benefit Analysis

Agroforestry at household level or community level can be fairly inexpensive to implement as the costs entail purchase of seedlings, land preparation and, capacity building and training of farmers. For large scale agroforestry projects, costs can increase due to construction of community nurseries, seedling production and distribution and installation of plantations and rejuvenation of regional forests. Exact costs have to be calculated on a case by case basis. There are minimal operating costs except for managing the farm and its products.

According to Rwanda's BAEF report, the average cost to put in place 1 ha of agro forestry plantations is 10 000 \$ covering land preparation, seedling preparation (seeds purchasing, tubing, shade construction, nursery maintenance) and baby trees plantation (Government of Rwanda, 2012). The economic analysis was done using the model of Rwanda's agroforestry programme.

This economic analysis will assume that 20,000 farmers are targeted for training and capacity building in agroforestry with equal representation of all regions. This is the same number of farmer's targeted for drip irrigation and rain water harvesting. The reason in choosing this number is to reach a large proportion of the potential market (target population group). Neither is it too large that efforts may get diluted and availability of finance may become a problem.

The following costs are anticipated:

1. Awareness and knowledge raising among farmers

A comprehensive one day training (including giving out brochures) on agro forestry would be given to the 20,000 farmers chosen at regional centres (such as church halls or school halls to bring down the cost). Extension agents and NGOs working in the field would undertake the training and equal number of farmers per region would be targeted for this. Cost estimate based on Rwanda's model would be \$15 (E195) per farmer which equates to \$300,000 or E3.9 million

2. Provision of seedlings to farmers

Ten seedlings of indigenous trees would be provided to farmers and this would cost E 15 per seedling, amounting to a total cost of E3 million. The cost per seedling was 0.1 in the case of Rwanda and this was too low for Swaziland and hence the price raised to E15 (1.15) per seedling, as it also includes transporting the seedlings to the regional training centres.

4. Cost of labour and fertilizers

It is assumed that the farmer will plant the trees himself as the land belongs to him and use organic fertiliser such as dung. No costs were budgeted for this.

The total cost of the project will thus be E6.9 million and this can be funded from internal Government funds, or funds can be sought from development partners. Ideally, this project could be broken up and incorporated into current programmes which focus on agriculture and farming.

The return on investment is estimated as follows:

- 1. Availability of fruits for the farmer, contributing to the household food security.
- 2. Availability of poles and firewood which can be sustainably harvested from the trees after a few years for farmer's own use or for sale.
- 3. Opportunity for farmers to begin beekeeping and generate income from honey production.
- 4. Improved soil fertility, reduced soil erosion and availability of fodder from leaves of tree for livestock are other benefits from this programme.

Although the benefits are difficult to quantify in terms of money, worldwide, this technology has been recognised as aiding the farmers improve income as well as being good for the environment.

4.1.3 Preliminary targets for technology transfer and diffusion

Agroforestry helps Swaziland achieve its greater goals of climate smart agriculture and effective adaptation. This technology helps both in agriculture and, forestry and biodiversity sectors achieve its targets. Environment friendly farming has been envisioned in important national documents such as the Swaziland National Development Strategy. Furthermore, Swaziland's National Climate Change Policy promotes tree planting as it supports carbon sequestration. Furthermore, this target is also aligned with Swaziland National Climate Change Strategy and Action Plan. The measure of training farmers to undertake agroforestry activities and providing them seedlings will help up-scale this technology.

Set of measures for	Preliminary targets	Rationale for choosing targets
enabling framework		
Training of 20,000	The 20,000 farmers would be chosen	The farmers must be equally
farmers from four	equally from the four regions.	represented from all regions for
regions, and		equality.
providing them with	Training at all four regions to be	Ministry of Agriculture's Extension
10 seedlings each.	conducted by Ministry of	Officers and NGOs work closely with
	Agriculture's Extension Officers and	farmers at local level and will be the
	NGOs working on the ground.	trainers, so that they can continue
	(within 5 years)	working with them even after the
		training is completed.

4.1.4 Identification of barriers for Agroforestry

There is limited adoption of agroforestry in Swaziland, although some programmes are promoting it and it is gaining momentum. However, stakeholders felt that the technology needs to be scaled up. They identified the following barriers:

- 1. Farmers think of short-term benefits and agroforestry only accrues benefits in the long term. This mind-set needs to be changed and can be changed through training and awareness raising.
- 2. Extension agents are not promoting agroforestry enough. This could be due to knowledge gap or lack of impetus. Rolling out an agroforestry programme will involve extension agents in providing training to farmers and may give the impetus to promote the technology.

4.1.4.1 Economic and Financial Barriers

There are no major financial barriers to this technology as the cost of purchasing seedlings is low and seedlings could also be grown by the farmer without any great difficulty. However, farmers often tend to have a mindset of thinking short term and not long term. Farmers do not prioritise using their income to buy seedlings for agroforestry. Farmers prioritise how they use their income and they may use it for activities which will provide immediate gains and agro forestry provides benefits in the long term, hence may not be deemed important for them. Limited access to agroforestry inputs such as seedlings could be a barrier for some. To remove this barrier, the programme recommends giving seedlings free of cost to beneficiary farmers.

4.1.4.2 Non-Financial Barriers

The non-financial barriers include inadequate awareness and capacity for agroforestry.

Barriers	Explanation	Effects
Awareness	Farmers think of short-term benefits and	Not having trees in farms is a lost
Low awareness and	agroforestry only accrues benefits in the	opportunity for the benefits that
impetus for	long term. This mindset needs to be	could be received through
investing in	changed and can be changed through	agoforestry, such as improving soil
agroforestry	training and awareness raising.	conditions, provisiong of firewood,
		fruits and fodder and opportunity for
		honey production.
Capacity	Extension agents are not promoting	By not promoting agroforestry,
Agriculture	agroforestry enough. This could be due to	farmers lose out on the potential
Extension Officers	knowledge gap or lack of impetus.	benefits they could accrue.
promotion of	Rolling out an agroforestry programme	
agroforestry is	will involve extension agents in providing	
inadequate	training to farmers and may give the	
	motivation to promote the technology.	

4.1.5 Identified Measures for Agroforestry

Based on the stakeholder consultations and review of Rwanda's BAEF as well as ClimateTechWiki, the following measure was identified to overcome the barriers for Agroforestry technology.

Awareness and Capacity building

Measure: An agroforesry programme to be rolled out for training 20,000 farmers and providing free seedlings. The training should be conducted by Ministry of Agriculture's Extension Officers.

4.1.5.1 Enabling Framework for Agroforestry

The enabling framework fot this technology includes awareness and capacity building measures targeting farmers with involvement of extension workers.

 Table 25 Enabling Framework for Agroforestry

Barriers	Measures	Economic	Other consequences of
		consequence of	measures
		measures	
Low awareness and	Training of 20,000	Training cost	Mind-set can be
impetus for investing in	farmers from four	E3.9million	changed from thinking
agroforestry	regions.		short term to long term
Agriculture Extension		Free seedlings (10	Involvement of
Officers promotion of	Providing free seedlings	per farmer) cost E3	Extension Officers in
agroforestry is	to 20,000 farmers	million	promoting Agroforestry
inadequate			will be greater

Mind-set of thinking	participating in the	NGOs on the ground
short term and not long	training.	will also be involved
term. Farmers do not		thus becoming a
prioritise using their	Training at all four	participatory approach
income to buy seedlings	regions to be conducted	which builds capacity in
for agroforestry.	by Ministry of	the country
	Agriculture's Extension	
	Officers and NGOs	
	working on the ground.	

4.2 Conservation of Genetic Resources

4.2.1 General description of Conservation of Genetic Resources

Conservation of genetic resources arose from the thoughts of gene resource conservation which began in the 1910's by agriculturalists who wanted to use wild relatives of crops in breeding programs. This is in response to the worry that scientists had that the genetic diversity of plant and animal breeders was rapidly being lost. Conservation of genetic resources is important as even maintaining productivity requires constant input of new genetic material to over-come crop losses due to pests that become pesticide resistant. This also helps with climate change as higher diversity in crops will make the farmer more resilient to changing weather and climate patterns. This also helps improve yields and withstand shocks of climate change. This technology helps in conservation of biodiversity and reduces species extinction. It also helps farmers in building a pool of robust seeds which can withstand varying climatic conditions and thereby help in adaptation.

Swaziland has 464 species of trees and shrubs which are important not only for livelihoods but also for Swaziland's culture, which has entrenched biodiversity in its ceremonies and traditions (Dlamini and Lupupa, 1995). The benefits of conserving genetic diversity are manifold for Swaziland. There will be improved productivity in agriculture, forests and biodiversity sectors. This will boost the economy and livelihoods as well as well-being will improve. Other related sectors such as tourism will benefit from biodiversity conservation through conservation of genetic resources. Biodiversity will be maintained and productivity in agriculture and forestry sector will improve, which will provide ecosystem benefits. Forest genetic resources provide employment in the commercial forests. They are also used in addressing poverty by means of products sold in market and also addressing the food security problems. Commercial forests accounts for diversity of product that earns foreign revenue for Swaziland. The major forestry products include poles for fencing, construction and transmission lines, and sawn timber for furniture making, nonwood forestry products such as foliage, medicine, honey, edible fruits and nuts, mushrooms and silk worms.

Increased species of biodiversity will improve attraction of Swaziland for eco-tourism which will generate jobs and income. Improved productivity in farming will provide social and economic benefits to the sector. Collection of data and species names will help form a database for scientists and students who are interested to learn more on this. Parks which are conserved provide study sites for environmental students. There is more reliance on medicines derived from forest genetic resources for healthcare by a large population in the country. With climate change, biodiversity will be affected by the changing rainfall patterns and temperature. The need for conservation will increase and there is necessity for preserving genetic resources. Thus, this technology is useful in assisting agriculture, forests and biodiversity in effectively adapting to climate change.

In the late 80's and early 90's domestic production of seeds in Swaziland was developed. The Seed Multiplication Project began with an agreement between the Government of Swaziland and Pioneer-Hibreed International (PHI) and a seed joint venture enterprise was formed. In 1991 a Seed company was established, which was responsible for the commercial production of Seeds. Through this, domestic

production of high-quality maize, beans, and sorghum seeds is being encouraged. Selling agents from South Africa have been providing vegetable seeds to Swaziland (Dlamini and Lupupa, 1995).

Swaziland's plant breeding programme is still young, hence use of genetic resources is small. The existing breeding programme is for cotton (*Gossypium*) and aims to improve the quality of cotton lint, to increase yield and to breed resistance to pests and diseases. Farmers are involved through on-farm trials, field days organized by the extension staff of agricultural Research Division. Swaziland Environment Authority (SEA) is mandated to look at environmental degradation including reduction or complete disappearance of species and a National Plant Genetic Resources Committee is in place to advise government on issues affecting Plant Genetic Resources. Furthermore, the University of Swaziland Agricultural Campus offers training in Plant and Soil Sciences which includes plant breeding as a subject. Swaziland does not have quarantine facilities in the country, however, the Plant Control Act 1981 seeks to control the importation and exportation of plant material without phyto-sanitary certification. Additionally, this Act prevents indigenous or protected flora from being exported as whole plants, seeds or parts thereof without permits from relevant authorities (Dlamini and Lupupa, 1995). Swaziland signed the International Convention on Biological Diversity in June, 1992, and is a member of the SADC Plant Genetic Resources Centre, which has been supported by Nordic countries since 1988. In addition, there is a network of the SADC Tree Seed Centres which focuses on genetic resources activities of trees.

The Swaziland National Plant Genetic Resources Centre (SPGRC) is located in Malkerns and was set up in 1989. This unit operates under the umbrella of the Agricultural Research Division of the Ministry of Agriculture and Cooperatives (MOAC) based at the Malkerns Research Station. It is responsible for collecting and conserving the country's plant genetic resources; to multiply and describe the characteristics of the collected material; to maintain the active collections and send duplicates to the base collection at the SPGRC; to document data on conserved material; to distribute and promote on-farm conservation of crop diversity through community seed banks; to raise awareness on the role and importance of plant genetic resources in ensuring food security in the SADC region and to promote conservation of vegetative propagated material in field gene banks. Currently, the Marula Project which is a brain child of Her Majesty the Queen Mother of the Kingdom of Swaziland, and run under MOAC is working towards commercialising marula (*Sclerocarya caffra*) production while also curbing the dangers that all other indigenous plants exposed to extreme weather events (SPGRC, 2017).

There are two major alternatives for the conservation of genetic resources and they are in situ and ex situ. In situ conservation refers to the conservation of important genetic resources in wild populations and land races, and it is often associated with traditional subsistence agriculture. Ex situ conservation refers to the conservation of genetic resources off-site in gene banks, often in long-term storage as seed. The focus of conservation of genetic resources in Swaziland is in the forestry sector. In situ conservation and ex situ conservation can be done and the focus in the country is on in situ conservation. Stakeholders at the workshop also suggested in situ conservation which they felt would benefit the local farmer and land user. Furthermore, establishing seed banks and undertaking research would be expensive and not entirely necessary considering Swaziland's neighbour South Africa has capacity to do this and are currently doing it. Stakeholders at the BAEF workshop and in bilateral interview stated that there is need to strengthen and

establish in situ methods of genetic conservation. This can be in the form of establishment of botanic gardens and reserves as well as field gene banks. There is also need to train adequate manpower in Plant Genetic Resources Management, Plant Ecology, Plant Taxonomy and Ethno botany to carry out the above activities.

Swaziland is a signatory to a number of regional and international conventions, protocols and agreements. These include the United Nations Convention on Biological Diversity (UNCBD), The United Nations Convention to Combat Desertification (UNCCD), the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) etc. There are also several legal instruments that were put in place as a result of the international and regional conventions, protocols and agreements in which the country is a signatory to. These include the Environment Management Act, 2002, the Flora Protection Act, 2001 and the Plant Control Act, 1981. Furthermore, the Sustainable Development Goal Target 2.5 states "By 2020, maintain the genetic diversity of seeds, cultivated plants and farmed and domesticated animals and their related wild species, including through soundly managed and diversified seed and plant banks at the national, regional and international levels, and promote access to and fair and equitable sharing of benefits arising from the utilization of genetic resources and associated traditional knowledge, as internationally agreed" (SDSN, 2017). Hence, this technology is in line with these regulations and there is endorsement for preserving genetic diversity in Swaziland.

4.2.2 Economic Analysis

The following measures are envisaged for Conservation of Genetic Resources in Swaziland.

Measure 1: Establishment of a Botanical Garden and Field Gene Bank.

The Botanical Garden for Swaziland would be a garden dedicated to the collection, cultivation and display of a wide range of indigenous plants labelled with their botanical names. The Field Gene Bank would be an area within the Botanical Garden where the plant genetic resources are kept as live plants that undergo continuous growth. The plants would require continuous maintenance. Field Gene Bank will provide an easy and ready access to the plant genetic resources, and the same material is conserved in the form of seeds. However, both the Botanical Garden and the Field Gene Banks require labour and inputs as well as land and are at risk from natural disasters and adverse environmental conditions like drought, floods or attacks from pests and diseases. The cost for establishment of Botanical Garden and Field Gene Bank is estimated by the Department of Forestry to be \$6,000,000.

The proposal for development of a National Botanical Garden was developed by the Department of Forestry. It is proposed to be located at Ngwane Park in the Manzini region on Portion 17 of Farm No.6. This site is very suitable and ideal for the project as it is located near the two main cities; furthermore, it os close to University campuses, schools and /colleges of Manzini and Hhohho regions. The site has the Mhlaleni /Nhlangano road on the West and Nazarene and Two Sticks Township on the East, Ngwane Park Complex on the South and Mhobodleni/Mhlaleni on the Northern side. The climate and altitude of the site allows most plants of the Highveld, Middleveld and the Lowveld to be accommodated in the garden. The site covers an area of about one hundred and sixty-four (164) hectares. The site has been generously

provided by the Government of Swaziland and it has already been declared a protected site for the Botanical Garden and Herbarium through a government gazette.

Stakeholders and relevant institutions consulted for development of the proposal for Botanical garden were, Botanic Gardens Conservation International, KEW Botanic Gardens, Southern African Biodiversity Network, South African National Botanical Institute, Swaziland's Ministry of Economic Planning and Development and Ministry of Pubilc Works and Transport. The Botanical Garden will include Arboretum, Nurseries, Protected plant species sections, Economic garden section, Medicinal and indigenous edible plant section, Ornamental section, Water feature, Geological section displaying the soils and rocks of the country with their unique features found within the garden area, Grass lawns, Sporting facilities, a Dam, Display house, Amphitheatre and chalets. Infrastructural Buildings such as Administrative Building and offices, Entrance ticket office, Security Gate and Fencing, Herbarium Building, Seed bank, Storerooms, Restaurant, Park bay, Kitchen, Book store and, Training and conference centre will also be built.

This centre will act as a training hub for farmers (who, when trained will aid in preserving genetic diversity through use of diversified seeds);

- Genetic diversity of Swaziland will be preserved; and
- The centre will generate income as a tourist centre and educational centre.

Measure 2: Training.

Train adequate manpower in Plant Genetic Resources Management, Plant Ecology, and Plant Taxonomy and Ethno botany to carry out the above activities. This can be achieved by sending the staff of SPGRC and Swaziland Environment Authority for further training. Through scholarships offered by Government of Swaziland, training could be provided and hence this is not costed.

4.2.3 Preliminary targets for technology transfer and diffusion

In the context of Swaziland's national roadmap and vision 2022, the environment and biodiversity are essential to achieving the UN Sustainable Development Goals hence the efforts to create an enabling place for such to be realized. This technology supports Swaziland's Vision 2022 and the various conventions and protocols that Swaziland is signatory to including the Convention on Biological Diversity, United Nations Framework Conventions on Climate Change (UNFCCC), Convention on International Trade in Endangered Species of the Wild Fauna and Flora (CITES), Convention to Combat Desertification (CCD), Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity and the International Treaty on Plant Genetic Resources for Food and Agriculture. Establishing a Botanical Garden and Field Gene Bank will build capacity of officers in SPGRC, SEA as well as farmers of Swaziland. The existing Herbarium of Swaziland contains 7200 plant specimens and this would be the minimum that can be preserved through the measures proposed here. There will be opportunity for in-situ and ex-situ conservation of plant genetic materials. The measure proposed is for the establishment of a National Botanic Garden (Conservation garden) to serve to fulfil Swaziland's national and international goals for plant conservation and sustainable development by providing a refuge for plants which are threatened by development, human expansion, over exploitation

and other related pressures. It will also promote awareness on flora conservation through educational programmes offered by the institution. There will be opportunity to create awareness amongst farmers to collect seeds and multiply them through field days at the Botanical Garden and Field Gene Bank. Farmers are chosen as benefitiaries because they can collect seeds and undertake seed multiplication on their own after the training and thereby contributing to attaining the targets of conservation of genetic resources in Swaziland.

The idea of a Botanical Garden precedes the observed loss of biodiversity in the country and lack of information on the flora existing in Swaziland. International participation in conservation focused goals, conventions and associations necessitates the need of ground work in Swaziland's conservation efforts. On a wider biodiversity scale, the country has a number of wildlife sanctuaries and game reserves/parks but lack the deliverables provided by a Botanical Garden. There has not been a botanical garden at a National or Regional level in the country.

4.2.4 Identification of barriers for Conservation of Genetic Resources

4.2.4.1 Economic and Financial Barriers

The major economic and financial barrier is provided in table below. *Table 26 Economic and Financial Barriers for Conservation of Genetic Resources*

Barriers	Cost for country	Remarks	Effects
Inadequate funds for	The estimate for	Often when more pressing	Swaziland's
establishment of a	establishing this	sectors need funds such as	indigenous flora is
national botanical	according to	health and education, the	not conserved
garden and field gene	Department of Forestry	internal country funds are	adequately.
bank.	is \$6,000,000.	not allocated for projects	
		such as botanical garden	
		which is not seen as an	
		urgent need, but rather a	
		"desirable" one.	

4.2.4.2 Non-Financial Barriers

Non financial barriers include low awareness and weak capacity in plant genetics resources management.

 Table 27 Non-Financial Barriers for Conservation of Genetic Resources

Barriers	Cost for country	Remarks	Effects

Awareness	Loss of genetic	Setting up Field	Some species will get
Inadequate seed	diversity and	Gene Banks will	extinct if they are not
multiplication done by	indigenous seeds.	help preserve genetic	collected as seeds,
farmers as they would		diversity of flora in	muliplied and
prefer to purchase		Swaziland	planted.
Genetically Modified seeds			
Lack of a National	Setting up a National	The Botanical Grden	Genetic diversity will
Botanical Garden where	Botanical Garden and	and Field Gene Bank	be preserved and the
farmers and environmental	Field Gene Bank will	will help in	center will also act as
manager can view and learn	cost approximately	preserving live	an educational/field
about Swaziland's	\$6,000,000	samples of	school and can raise
indigenous flora.		Swaziland's flora	funds as a tourist
			attraction.
Capacity	Training of staff of	Capacity building in	The officers trained
Inadequate capacity in	SEA and SPGRC in	country will help	can train others in the
plant genetic resources	Plant Genetic	ensure sustainable	country as well as
management in the country	Resources	utilisation of the	hold training sessions
	Management Plant	Botanical Garden	for farmers.
	Wanagement, I fait	Dotainear Garden	
	Ecology, Plant	and Field Gene	
	Ecology, Plant Taxonomy and	and Field Gene Banks.	
	Ecology, Plant Taxonomy and Ethnobotany	and Field Gene Banks.	

4.2.5 Identified Measures for Conservation of Genetic Resources

Awareness

Measure 1: Establish a national Botanical Garden and Field Gene Bank.

Measure 2: Create awareness amongst farmers to collect seeds and multiply them through field days at the Botanical Garden and Field Gene Bank.

Capacity

Measure 2: Provide training to staff of SEA and SPGRC in in Plant Genetic Resources Management, Plant Ecology, Plant Taxonomy and Ethnobotany through providing scholarships for further studies.

4.2.6 Enabling Framework for Conservation of Genetic Resources

Given below are a set of measures that will form the enabling framework for conservation of genetic resources.

Table 28 Enabling Framework for Conservation of Genetic Resources

Barriers	Measures	Economic	Other consequences
		consequence of	of measures
		measures	
Lack of a Botanical	Set up a Botanical Garden	Cost to set up the	The centre will attract
Garden where farmers	and Field Gene Bank.	centre is \$6,000,000	tourists and can act as
and environmental			an education centre for
manager can view and			farmers and university
learn about Swaziland's			students
indigenous flora.			
Farmers find it	Create awareness	The cost of holding	Due to the fact that
convenient to purchase	amongst farmers to	field schools for	seed collection and
Genetically Modified	collect seeds and multiply	farmers at the	multiplication takes
seeds from South Africa	them through field days at	Botanical Garden and	effort, farmers may
as it is affordable	the Botanical Garden and	Field Gene Bank is	continue opting for
Inadequate seed	Field Gene Bank.	only the cost of	Genetically Modified
multiplication done by		transport and	seeds due to its short
farmers as they would		refreshments for	term benefits.
prefer to purchase		farmers who could	
Genetically Modified		make a day trip to the	
seeds		centre. Farmers who	
		come from far would	
		need to be provided	
		accommodation.	
Inadequate capacity in	Provide training to staff	This can be covered	The trained officers
plant genetic resources	of SEA and SPGRC in in	through Government	can impart training to
management in the	Plant Genetic Resources	scholarships.	other colleagues and
country	Management, Plant		capacity development
	Ecology, Plant		within Swaziland will
	Taxonomy and		be improved.
	Ethnobotany through		
	providing scholarships		
	for further studies.		

4.3 Invasive Alien Species Management

4.3.1 General description of Invasive Alien Species Management

Alien (non-native) species have been introduced both accidentally and intentionally in Swaziland. Intentional introductions are, and have been, motivated by economic, environmental and social considerations. It is important to control invasive species as their impacts are immense, insidious and usually irreversible, and they may be as damaging to native species and ecosystems through loss and degradation of habitats. The cost of reversing their impact is large. Although some species have invaded habitats through natural ways, human activity such as exploration, colonization, trade and tourism has dramatically increased the diversity and scale of invasions by alien species. Invasive species contribute to land degradation through soil erosion and the drawing down of water resources, reducing resources available to people and indigenous plants. Others produce leaf litter which poisons the soil, suppressing the growth of other plants, and in particular that of the understorey. They may alter the environment in directions that are more favourable for them but less favourable to native species. This could include altering geomorphic processes (soil erosion rates, for instance, or sediment accretion), biogeochemical cycling, hydrological cycles, or fire or light regimes. Swaziland declared a national emergency on proliferation of invasive species in year 2005, as they were said to threaten food security and thus the economy of the country. SNTC and its partners have been collecting data, researching, mapping and compiling information materials on invasive species. A number of programmes and projects in Swaziland has already included elements of invasive species control (for example Lower Usutu Sustainable Land Management and the Strengthening the National Protected Areas System of Swaziland or SNPAS).

Some of the invasive species such as eucalyptus and guava are beneficial to people and so support from communities to control those species may be difficult to receive. Data collection, research and mapping of invasive species require specialized personnel. Swaziland has to put in place systems for evaluating the risks and benefits associated with alien species, and for deciding when to use them and when to prevent their introduction or eradicate them. This entails considering the economic, development, environment and human well-being costs and benefits, and recognizing the close relationship between sectors. Second, Africa faces the challenges of how to translate its policy objectives into effective management practice. When species are identified as a threat, appropriate responses may include establishing systems for their eradication, as well as for controlling and monitoring their introduction. When alien species are used, developing early warning and assessment systems regarding their behaviour as well as effective response systems is essential. Swaziland National Trust Commission (SNTC), Swaziland Environment Authority (SEA) and its partners have already embarked on such programmes. Some species such as the eucalyptus provide benefits which reduce the need to completely eradicate them form the country. Invasive species control is a continuous activity as invasive species are propagated by seeds blown by wind, carried by fauna and deliberately planted by humans. Data collection and mapping need to be done at regular intervals to assess extent of spread of invasive species. There is a strong political endorsement through the Ministry of Tourism and Environmental Affairs and Government of Swaziland declared an emergency of invasive species, indicative of the solid commitment to this cause.

UNEP has declared that invasive species is a substantial threat to ecosystems. The Millennium Ecosystem Assessment (MEA) found that trends in species introductions, as well as modelling predictions, strongly suggest that biological invasions will continue to increase in number and impact (MEA, 2005). With climate change, temperature variations and rainfall variations may promote growth of some species of alien invasive plants. Due to these species, farmers are losing productive arable land used to produce cash crops and pastures where domesticated and wild animals graze. Invasive species may out-compete native species, repressing or excluding them. Controlling invasive species therefore allows indigenous species to thrive which has multiple benefits of provisioning of productive ecosystem services such as food, fibres and medicinal plants. Habitat loss reduction helps in maintaining biodiversity and use of land for productive purposes such as agriculture. Invasive species use excess water compared to indigenous species so controlling them has indirect positive benefits on water resources. Invasive species such as the Wattle (originally from Australia, but introduced in Southern Africa for wood fuel security) has the tendency to take over grazing land and convert to bush. When such species which take over arable and grazing land are controlled the benefits are felt in agriculture and livestock rearing through improved land and yields.

In Swaziland, the sugar and forestry industries are struggling to save their farms from these alien plants and thousands of hectares of developed land in which they have invested expensive irrigation infrastructure (see figure below). The plants have clearly demonstrated their ability to change permanently our ecosystem and impact negatively on economic development. Furthermore, invasive species such as the Guava are planted by individuals for fruits and therefore there is need for greater awareness raising to prevent people planting the invasive species. Controlling invasive species will help the agriculture, forests and biodiversity sectors and indirectly aid in climate change adaptation (SEA, 2017).

Woody Invasive Species Area (000ha)

Figure 10 Total Forest Area Affected by Woody Invasive Species in 2010

(Source: SEA, 2014)

When implementing this technology, there will be substantial costs of data collection, mapping, awareness raising, and field activities in controlling invasive species. There will also be continuous costs of database updating, regular publishing of research results and maps and activities on the field such as awareness raising as well as removal and destruction of invasive species. However, this will be offset by benefits accrued in prevention of land being taken over by invasive species. Benefits of controlling invasive species are myriad. This includes being able to use land productively, increasing agricultural yields and enhancing biodiversity. Habitat loss is prevented and therefore there are benefits to wildlife. This will help the tourism sector.

Programmes and projects that control invasive species employ people to physically remove the plants and thus jobs are created. Higher level jobs are created for data collection, research, capacity building and mapping of plants. Increased research and data collection as well as mapping of invasive plants help provide botanists and students with more information. Capacity building at village level on types of invasive species and their impacts help increase knowledge amongst communities.

There is opportunity in including control of invasive species into current and ongoing as well as future environmental, forestry, agricultural and water projects in the country. This problem affects all these sectors. Beneficial invasive plants such as wattle, guava and eucalyptus are used by communities and industries and may be difficult to remove from Swaziland. But, there are alien species which are not beneficial, such as weeds. The Swaziland National History Society, notes that an invasive species known locally as demonica weed was blown into Swaziland by a cyclone in 1984; this has subsequently rendered large areas of formerly productive agricultural land useless (SEA, 2017). Local stakeholders understand to some extent the negative impacts of invasive species. The challenge may be for controlling of species which are beneficial to humans.

Ministry of Tourism and Environmental Affairs, Swaziland Environment Authority, Swaziland National Trust Commission, All Out Africa and Natural History Society of Swaziland are all working towards studying, compiling data and physically removing these alien species. A project was carried out in 2003/4 by Swaziland Environmental Authority, to compile existing data on alien invasive plants of Swaziland. One product of this project was the creation of an online database of Swaziland's alien/non-indigenous plants, with distribution maps and photographs or illustrations. Furthermore, the Luhlanyeni Chiefdom community were one of the first to receive training on clearing and controlling invasive alien species. They cleared 50ha of rangeland taken over by lantana by physically removing the lantana and subsequently spraying using chemicals provided by the Ministry of Tourism and Environmental Affairs. This community gave feedback that due to the clearing of rangeland, they are benefitting from improved livestock management. They also pointed out that the commitment for removal of invasive alien species takes 4-5 years and work is extremely strenuous, leading to many members of the community opting out due to ill health (IFAD, 2014).

Some progress has been made with regard to managing invasive alien species in the country. Swaziland Environment Authority spearheaded the National Alien Invasive Plant Species Control and Management

Strategy which aims to promote cooperative, coordinated and integrated management and control of alien invasive plant species to reduce their ecological, economic and social impacts on human and natural resources. Through this programme, survey and mapping of distribution and intensity of infestation of selected invasive alien plant species was done by the department of forestry. In the GEF-UNEP funded project on Strengthening the National Protected Areas System of Swaziland, the element of managing invasive alien species was included SEA (2014).

4.3.1 Cost benefit Analysis

According to an assessment done on IASPs in 2010, Pine, Eucalyptus and Chromolaena has the highest average density amongst invasives. Lantana covers the greatest area, followed by Chromolaena and Black Wattle. In total 80% of Swaziland is invaded at different densities, or 10.68% is invaded at a 100% density (condensed) which covers 184 995 hectares. This area will cost approximately E665 million to be cleared once (Kotzé et al. 2010).

Swaziland already has a National Strategy for the Control and Management of Invasive Alien Plant Species. This is under review through the SNPAS programme. The implementation strategy with monitoring and evaluation is the responsibility of the Forestry Department in the Ministry of Tourism and Environmental Affairs. The strategy document has a plan for activities with a detailed budget for the institution (personnel and equipment) and budget for the clearing of IAPS (Government of Swaziland, 2010). The grand total costs comes to E141,404,591 (141 million) for five years, which at 2017 adjusted by 10% from 2010 budget would amount to E275,557,544.5 (276 million) for five years. The budget includes a 100 teams with 25 combatants per team, working 20 days a month, chemicals for combat, cost of clearing land (cutting IASPs), transport costs, public awareness and research costs.

For a comparison, the IASPs management programme of South Africa was taken. South Africa has the largest programme on IASPs in the region called the "Working for Water" programme, which strives to control invasive alien species (until recently only plants), and in so doing to protect essential ecosystem services. They have a 3-year budget of R7.8 billion, arguably the most generous funding for an environmental problem that South Africa has ever seen (van Wilgen et al., 2012). For Swaziland, the budget for IASPs control would need detailed site specific analysis.

4.3.2 Preliminary targets for technology transfer and diffusion

Invasive Alien Species (IASPs) are a threat to biodiversity, water, agriculture and forestry. Managing IASPs helps Swaziland achieve its commitments for the Convention on Biological Diversity. The Convention on Biological Diversity (CBD) seeks to ensure the conservation of biological diversity, expects the country to undertake number of provisions aimed at safeguarding biodiversity and requires Government to develop national strategies, plans and or programmes for achieving this. Managing IASPs helps Swaziland achieve its sectoral goals as IAPSs affect the sectors. For example, Swaziland wants to safeguard its water resources and grazing lands because it is important for livelihoods, however IASPs wreak havock in wetlands and are

taking over grazing lands, thereby affecting these sectors. Swaziland's INDC has also prioritised IASPs management. Furthermore, this is backed up by the National Forest Policy and the Plant Control Act of 1981 which provides for the control, movement and growing of plants and matters incidental thereof. It prohibits importation of plants, insects and alien animals without a permit or otherwise in accordance with the conditions attached to a permit issued by the Principal Secretary of the Ministry of Agriculture and Cooperatives.

The priorities for Swaziland with regard to IASPs is that the following invasive plants need removal: *Chromolaena odorata, Solanum mauritianum, Lantana camara, Caesalpinea decapeta, Eucalyptus species, Rubus species, Psidium guajava, Jacaranda mimosifolia, Caesalpinia decapetala, Opuntia species, Pinus species, Cereus jamacaru, Ricinus communis, Senna didymobotrya, Sesbania punicea, Melia azedarach and Acacia mearnsii. Pathenium hystorophorus* (Government of Swaziland, 2010).

The National Forest Policy recognizes the following species as priority IAPS: Chromolaena odorata,

Lantana camara, Solanum mauritianum, Pathenium hystorophorus. The strategy states that the following invasive plants species are of economic use and should be kept within management level at all times: Eucalyptus species, *Psidium guajava, Acacia mearnsii and Jacaranda mimosifolia.* Land owners should keep these plants within their planted areas and they should be stopped from spreading to other areas. The ambition is taken from the National Strategy for Control and Management of Invasive Alien Species (Government of Swaziland, 2010), and is as follows:

- Target area for first clearing is 563,325.3 hectares and 15000 hectares for follow up clearing.
- At least 100 combat teams should be engaged in IAPS clearing on SNL.
- Each combat team is expected to clear 70 hectares per month.

When implementing IASPs management, training will need to be provided to personnel and this would need to be incorporated into the management programme. Lessons could be learnt from South Africa' Working for Water programme which manages IASPs in South Africa. Recognizing that IASPs waste a lot of water from ecosystems and are a threat to biodiversity, South Africa embarked on one of the most successful project in the region to manage IASPs. Working for Water currently runs over 300 projects in all 9 South African provinces. Mechanical and chemical methods as well as biological and integrated control methods are used and the programme provides employment for many. It is hailed as a success. But in Swaziland, IASPs management is being promoted using "Management by Utilization method" and is currently being implemented in its Protected Areas with funding from UNDP through the Strengthening the National Protected Areas Systems of Swaziland (SNPAS) Project. This approach is useful as it uses an integrated land and natural resource management approach and at same time enhances vulnerable communities' livelihoods, in particular those adjacent to the Protected Areas.

4.3.3 Identification of barriers for Invasive Alien Species Management

From literature review and based on the stakeholder consultations as well as the consultant's own knowledge, the barriers for management of invasive alien species are described here. Problem and solution tree method and brainstorming was used for developing and to identify barriers for this technology.

4.3.3.1 Economic and financial barriers

Stakeholders at the BAEF workshop identified the high cost associated with management and control of IASPs to be a major challenge. There is need for expensive chemicals and tools as well as labour when uprooting or burning the plants. Often the chemicals are imported and local production may be research intensive and costly. The control measures are often labour intensive and require rapid action and follow up programs. The labourers involved must also be trained well and provided with protective clothing. There are more urgent priorities for Swaziland Government and hence adequate budgetary support for IASPs control may be lacking. As a result, IASPs continue to spread in the country.

Barriers	Cost for country	Remarks	Effects
High cost	Cost of importing	Due to high cost involved,	Competing
assosciated with	chemicals for IASP	budgetary support for IASPs	government
IASP management	management	management is limited and	priorities may cause
and control		IASPs management is being	reduction in the scale
chemicals and tools		done at project levels with	at which IASPs
		support from development	management is done
		partners (UNDP)	
High cost of labour	Cost of training	IASPs management is labour	Unless ongoing
for IASP	people for IASPs	intensive and needs skilled	monitoring and
management	management, cost of	labour	follow up is done,
	protective clothing		IASPs control efforts
			may be futile

Table 29 List of economic and financial barriers for IASPs management, costs for the country and effects of the barriers

Table above gives a list of economic and financial barriers for management of IASPs.

4.3.3.2 Non-financial barriers

Non-financial barriers for IASP management include poor awareness and understanding on IASPs and their impacts and weak political, strategic and legislative framework for IASPs management. The National Alien Invasive Plant Species Control and Management Strategy aims to promote cooperative, coordinated and integrated management and control of alien invasive plant species to reduce their ecological, economic and social impacts on human and natural resources (SEA, 2017). Although Swaziland has a good strategy for control of IASP, the awareness is low. Stakeholders at the BAEF stated that there are insufficient awareness campaigns regarding IASP and they are not fully integrated into school curriculum. This could be due to it being a fairly new topic and teachers may not be conversant with the subject. It leads to weak understanding and people may promote IASPs by planting them in their gardens, as some of them are beneficial, i.e. guava for fruits and wattle for fuel wood. This will cause IASPs to continue to spread and become more difficult to control and may also threaten grazing land and croplands.

Table 30A participant presenting the problem tree for IASPs on behalf of his group at the BAEF workshop

The cross sectoral nature of IASPs provides a challenge of developing a legislative framework specific for the issue. Stakeholders also noted that there is inadequate action politically for management of IASPs. The larger negative impacts of IASPs spreading in the country influences water availability, as some species grow in wetlands. IASPs spreading into croplands and grazing land have negative economic impacts. Habitat loss due to proliferation of IASPs may cause species loss and negative biodiversity impacts.

Barriers	Cost for country	Remarks	Effects
Political	When IASPs continue	There is an IASP Strategy	Inadequate action
Weak political,	to spread, water	developed by Ministry of	politically for IASPs
strategic and	sources are affected,	Tourism and Environmental	management.
legislative	biodiversity is affected	Affairs in 2010. This is under	
framework for	and productive lands	review through the SNPAS	
IASPs	may be impacted by	programme.	
	IASPs invasion.		
Awareness	Cost of creating	IASPs management is not fully	People may promote
Limited	awareness through	integrated into school curricula	planting of IASPs
understanding of	IEC materials and	and there is insufficient	due to low awareness
IASPs	campaigns.	awareness.	levels.

Table 31 Non-financial Barriers, costs to country and effects of IASPs

4.3.3.3 Identified measures

Swaziland's National Development Strategy (Vision 2022) and other international obligations such as the Aichi Targets under the auspices of the Convention on Biological Diversity have set targets for the conservation of its ecosystems and species. IASPs are a threat to Swaziland's ecosystems, therefore it is imperative that the country manages the spread of IASPs. Stakeholders suggested that Swaziland should use the approach of "Management by Utilization" to deal with IASPs. Economic exploitation of notorious invasive species has been found to be a good way to manage their spread and was found to be successful in countries such as Sudan, Ethiopia, India, Senegal, Mali, Nigeria and the Gambia (Borokini and Babalola, 2012). The measures discussed below were identified by stakeholders during consultation on management of IASPs. There was consensus that IASPs should be "managed by utilization". This is in line with Government priorities and a UNDP GEF funded project currently being implemented in Swaziland called "Strengthening the National Protected Areas Systems of Swaziland" or (SNPAS) Project.

4.3.3.4 Economic and Financial measures

Measure 1: Exempt all IASP management and control chemicals from import duty. This will reduce the cost of usage of such chemicals for IASP management programme, thereby reducing its overall budget.

4.3.3.5 Non-financial measures

Awareness

Measure 1: Improve awareness of IASPs and its impact on the environment and all the sectors affected. This can be done through awareness campaigns and road shows.

Capacity

Measure 2: Improve skills in IASPs management by providing training to IASPs field officers responsible in SEA.

Political

Measure 3: Prepare a policy brief on impact of IASPs on sectors in Swaziland. This will help create further awareness amongst all policymakers of various sectors and they will be motivated to include IASPs management into their programmes.

Legislative

Measure 4: Revise the IASPs Management Strategy to make it more robust for implementation. Remove any weaknesses and grey areas that may cause confusion in the strategy. Include stricter controls on crossborder movement of IASPs, planting of IASPs and managing IASPs. This can be in the form of fines for offenders.

4.3.3.6 Enabling framework for IASPs management

The enabling framework for IASPs management was developed by stakeholders and includes multiple sectoral responses. The table below gives the enabling framework for IASPs management.

Barriers	Measures	Economic consequence of	Other consequences
		measures	of measures
Financial	Exempt all IASPs	Loss of tax revenues for	This tax incentive
High cost of IASPs	management and	Government, but this will be	could be misused by
management	control chemicals and	offset by the gains in	people who may buy
chemicals and tools	tools from tax.	controlling loss of productive	in Swaziland and
		lands and water resources	export to
		from damaging impacts of	neighbouring
		IASPs.	countries.
Capacity	Training to be	It will be costly for	Trained personnel
Skilled labour	provided to IASPs	Government to train personnel	may seek jobs
needed for IASPs	management field	on a regular basis and so	elsewhere thereby
management	officers. This must be	training funds may be sought	causing leakage in the
	ongoing, as trained	from development partners	system.
	officers may leave the		
	organization or may		
	need refresher		
	trainings from time to		
	time.		

Table 32 Enabling framework for IASPs management in Swaziland

Legislative	Revision of IASPs	Revision of IASPs strategic	Enaction of revised
The IASPs	Management Strategic	plan will involve conducting	strategy requires
management	plan and enaction	stakeholder consultations and	many sectors and
strategic plan is not		experts working on revising	players to work
being implemented		the documents. This will	together. This may
effectively. Include		involve costs. Government	take time and
stricter controls on of		may seek support from	extensive
cross-border		international agencies that	consultations, during
movement of IASPs,		support policy development	which IASPs growth
planting of IASPs		such as UNDP for funding	and spread will
and managing		this.	continue.
IASPs.			
Awareness	An awareness	Cost of creating awareness	Beneficial IASPs
Many people are not	campaign needs to be	through IEC materials, policy	such as guava, pine,
aware of the	done about impacts of	brief and campaigns.	wattle may be
devastation caused	IASPs and identifying		continually used by
by IASPs in	the species. This will		people and they may
Swaziland. People	discourage people		resist the move to
have planted IASPs	promoting them		control their spread.
in their farms and	accidentally or		
households due to	intentionally.		
poor awareness	Awareness raising will		
about them.	need to be done for		
	policy makers too.		

4.3.4 Linkages between barriers and complementarities between technologies in Forestry and Biodiversity Sector

In the forestry and biodiversity sector, weak capacity and low awareness were linked to all three technologies prioritised. Inadequate funding was linked to both conservation of genetic resources and IASPs management as hindrances for these technologies not reaching scale. There are complementarities between the technologies, as control of IASPs will support conservation of genetic resources, as IASPs are a threat to indigenous species in some areas. Capacity building in conservation of genetic resources and IASPs are complementary to each other as they have overlaps. Furthermore, awareness raising can be complementary if conducted in a wholistic manner with messages that touch on all three technologies.

5. Chapter : SWOT Analysis of Measures

Here measures are analysed and compared to enable political decision making. A SWOT analysis of measures is performed and in the next section, overall strategy to overcome barriers been designed.

Technology	Measures	Strengths	Weaknesses	Opportunities	Threats	Proceed to
						TAP stage?
Integrated	Develop proposals	Rivers originating in	Swaziland is a middle	Since Swaziland is the	Project and	Yes
River Basin	to raise funds from	Swaziland are shared	income country,	riparian country for	development terms	
Management	international and	with Mozambique and	therefore getting funds	majority of the rivers,	must be negotiated	
(IRBM)	regional	South Africa and hence	allocated for lower	there is opportunity for	carefully such that	
	institutions/opport	there are regional	income countries is not	Swaziland to develop	equitable share of	
	unities.	agreements already in	possible.	infrastructure such as	resources is done and	
		place, hence preparing		dams and roads which will	such that economic	
		proposals will become		provide employment for	giant such as South	
		better guided and focus		Swazis and help with	Africa does not take	
		on practical activities		economic development in	majority of benefits.	
				the Kingdom.		
Integrated	Raise funds at	Raising funds through a	For transboundary	The sugar industry if	Any national level	No. This is
River Basin	national level	PPP would be beneficial	resources national	Swaziland and Eco-	PPPs affecting shared	due to
Management	through Public	to the country's economy	projects would have to be	Tourism sector would be	water resources would	agreements
(IRBM)	Private	as the private sector	carefully designed such	possible private sector	be subjected to	Swaziland
	Partnerships	partner and Government	that transboundary	partners that can benefit	scrutiny by the	has signed
	(PPP).	will both benefit through	resource management	through PPP.	countries using the	with regard
		the partnership.	agreements such as the		shared water courses.	to shared
			SADC shared water		This may impose	water
			courses is adhered to.		certain restrictions on	courses.
					use and loss of control	
					in the PPP.	

Table 33 SWOT analysis of measures

Integrated	Establish a "Funds	The Funds Coordination	Since it will be a	Opportunities to share	Some development	Yes
River Basin	Coordination	Platform will promote	voluntary mechanism, it	resources such as vehicles,	partners may not be	
Management	Platform" within	transparency, create	will be based on initiative	"piggybacking" on	willing to share their	
(IRBM)	Swaziland with	synergies and promote	and interest of members.	workshops to include	resources and may	
	members from	sharing of funds, thereby		additional capacity	have policies that	
	development	being better "value for		building initiatives and	prevent them to share	
	partners, private	money" and will enhance		create deeper impact with	resources. Lack of	
	sector,	ability to do more with		projects.	trust may also prevent	
	Government and	same funds.			some agencies to	
	non-state actors.				openly divulge their	
					resource plans and	
					work together with	
					other partners.	
Integrated	Build capacity of	Officers whose canacity	There are no weaknesses	There will be opportunity	Officers whose	Ves
River Basin	officers	is built will become	anticipated from building	to train officers in the	canacity is built may	103
Management	responsible for	champions in IRBM and	capacity of officers	latest technologies which	leave the country in	
(IRBM)	implementing	provide impetus at	capacity of officers.	will help the sector	pursuit of better career	
(IRDWI)	relevant	national level Building		improve	prospects	
	legislations (such	canacity nationally is an		improve.	prospects.	
	as the Water Δct	investment for the				
	through providing	country				
	them training	country.				
	technical support					
	and equipment					
	where needed					
	where needed.					
Integrated	Create awareness	An aware society will be	Communities have been	There is opportunities to	Local communities	Ves
River Basin	amongst	stewards of the	involved in many	incorporate awareness	whose mind-set that	100
Management	stakeholders about	environment Awaranass	awareness raising	raising with national and	"water is free" and	
(IPRM)	IRBM and water	raising amongst local	awareness raising	international	"from God" may	
	INDIVI allu water	communities will trigger	projects and there could	commomoration days	oppose when	
		communues win ungger	projects and there could	commenioration days	oppose when	

	resources management.	local champions who will carry forward good	be fatigue from attending too many meetings and	(such as World Water Day, World Wetlands	awareness raising sessions talk about	
		environmental	awareness sessions.	Day).	need to manage	
		management activities			resources which are	
		long after the project has			beginning to be	
		ended.			affected by scarcity.	
Integrated	Build capacity of	Building capacity of	There may not be	Opportunity to hire highly	New recruits may	No. This Can
River Basin	institutions	institutions in Swaziland	sustained funding to fill	skilled personnel who will	leave the organization	be looked at
Management	responsible, such	is an investment for the	new positions. Long term	add value to the	in pursuit of career	when long
(IRBM)	as the River Basin	country. Having strong	funding is needed before	institutions. Opportunity	opportunities	term funding
	Authorities	institutions within the	hiring new personnel.	to look for personnel with	elsewhere.	is available,
	through filling	country will help the		skills in using latest		so that
	vacancies and	sector.		technology and modernise		sustainable
	adding more staff			the institutions.		capacity
	where needed					building can
	(such as for water					be done.
	quality checks and					
	leakage					
	management).					
Integrated	Create a	Improving participation	Collective dialogue and	Opportunity to include	Traditional authorities	Yes
River Basin	Participatory	and dialogue between	participatory decision	traditional authorities in	may be resistant to	
Management	Forum, where	stakeholders including	making is usually a long	decision making will	dialogue and	
(IRBM)	traditional	traditional authority will	and time consuming	reduce conflicts in	collective decision	
	authority and	be beneficial for success	process. Quick results	resource use and provide a	making.	
	relevant	of any project, as local	and outputs could not be	voice to communities.		
	stakeholders can	authorities have powers	expected.			
	be given a voice in	at local level and can				
	decision making.	influence the outcome of				
		projects.				

Wetland	Set a funds	The Funds Coordination	This is a voluntary	Projects related to	There could be	Yes
Restoration	coordination	Mechanism will promote	stakeholder forum and	environmental	development partners	
and	mechanism	coordination and better	depends on initiative of	management may have	who are not interested	
Protection	involving	usage of funds for WRP	members	wetlands restoration and	to join this mechanism	
(WRP)	stakeholders	C		protection aspects. This	as they prefer full	
	where meetings			mechanism will allow for	autonomy on their	
	are held regularly			synergistic use of funds	resrouces.	
	and synergies in					
	usage of funds for					
	wetlands					
	restoration and					
	protection by					
	agencies working					
	in same areas are					
	realised.					
Wetland	Proposal	Since these wetlands	Proposal development	There is opportunity to	By the time proposals	Yes
Restoration	development for	have already been	requires time and since	include wetlands	are developed and	
and	wetlands	identified in a previous	Swaziland is a middle	rehabilitation under other	funds raised, the	
Protection	restoration and	study and this technology	income country, funds	larger environmental and	wetlands may have	
(WRP)	protection for	has been noted as helping	for low income countries	developmental projects.	been over exploited	
	shortlisted	with adaptation in	are unavailable.	There is also opportunity	and degraded.	
	wetlands	Government documents,		to undertake community		
	Mlawula,	this indicates		lead programmes such as		
	Ubombo,	Government's support		Community Based Natural		
	Ndlotane,	for implementing this		Resource Management		
	Mangwenya and	technology. Thus		(CBNRM) projects to		
	Shovella.	proposal development		include wetlands		
		has a strong justification.		protection.		
Wetland	Create awareness	This will motivate	Community members	Opportunities for	When awareness is	Yes
Restoration	of importance of	communities living near	may not be available at	sustainable use of	raised on sustainable	
and	wetlands through	the wetlands to	the meetings, or may not	wetlands for enhancing	use of wetlands,	

Protection	community level	participate in its	take the meetings	community livelihoods	which includes	
(WRP)	meetings and site	protection.	seriously.	could be explored at these	restrictions on	
	visits for			meetings.	unsustainable	
	communities				harvesting,	
	living near				communities may	
	wetlands.				resist this.	
Wetland	Create a wetlands	Measuring wetlands	Monitoring using remote	There is opportunity to	There are no threats	Yes
Restoration	monitoring system	health is the first step	sensing may miss out on	monitor health of all	identified for this	
and	to be implemented	towards managing them.	nuances that are site	wetlands in the country as	measure.	
Protection	and published	Data is important to make	specific and can be	well as look at other		
(WRP)	regularly by	evidence based	obtained only through	pressures on the		
	Swaziland	decisions.	discussions with	environment, such as		
	Environment		communities in the area.	deforestation happening in		
	Authority on an			other areas.		
	ongoing basis.					
Wetland	At the funds	Clearing confusions in	The funds coordination	There is opportunity to	Institutions may not	Yes
Restoration	coordination	roles and responsibilities	mechanism is a voluntary	look at	agree to divide	
and	mechanism	and removing	imitative and so it is	overlaps/confusions and	responsibilities and	
Protection	meetings grey	duplications and overlaps	difficult to hold people to	create greater synergies.	may want to maintain	
(WRP)	areas in roles and	will help in better	account for		status quo.	
	responsibilities	utilisation of funds.	outcomes/outputs.			
	can be discussed					
	and better clarity					
	arrived at.					
Rooftop Rain	Government could	One major barrier that	This measure has a	There is opportunity for	Some people may buy	Yes
water	subsidise RWH	prevented people to	weakness of not being	utilising harvested	the subsidised tank	
harvesting	tanks (by 50% of	invest in RWH was the	able to cover all	rainwater for household	and resell at greater	
	its cost) by	price of the tank. This	households in the	gardens which will	price.	
	providing	measure will overcome	country.	contribute to improved		
	vouchers to	that barrier.		nutrition.		
	selected					
	households.					
Rooftop Rain	Introducing RWH	Tertiary institutions will	This is dependent on the	Availability of skilled	Tertiary institutions	No
--------------	--------------------	----------------------------	------------------------------	-----------------------------	-------------------------	-----
water	technology in	find it beneficial to	cooperation and support	personnel will bring down	may not take this as a	
harvesting	tertiary schools,	include this practical	of tertiary institutions.	cost of installation of	priority and may resist	
	and providing	technology training. This		RWH systems.	the inclusion into	
	skills training.	will provide skills to			curricula.	
	_	youth, which is				
		sustainable for the long				
		run in making RWH				
		popular and viable.				
Rooftop Rain	Legislative	Legislative measure will	Making a technology	Amending RWH	People may protest	No
water	measures may	give legal mandate to	compulsory may not be	technology into building	enforcement measure.	
harvesting	help in improved	implement RWH	fair for poor households.	control regulations, water		
	adoption of RWH	technology. A policy to	It is also costly to enforce	and public health acts will		
	technology.	promote RWH or it could	such legislation.	provide opportunity to		
		be amended into the		design projects right from		
		Building Control, Water		beginning with RWH		
		and Public Health Acts of		technology incorporated		
		the country.		into them.		
Rooftop Rain	SWASA needs to	Having good RWH	This is dependent on	Linking RWH standards to	No threat envisaged.	No
water	make RWH	standards will ensure	revision of building	building standards will		
harvesting	standards and link	proper installation of	standards.	provide opportunities for		
	it to building	RWH systems thereby		construction companies		
	standards.	increasing confidence of		and personnel to know		
		people in these systems.		more about this		
				technology.		
Rooftop Rain	Improving	The WASH forum is well	RWH may not be	Opportunity to include	No threat envisaged.	Yes
water	awareness. Setting	established in Swaziland	considered a priority	RWH into WASH forum		
harvesting	up a RWH Forum	and including RWH	when more important	entails no further costs.		
	under Water	under this forum will	issues are being	Information on rainfall		
	Sanitation and	ensure good information	discussed such as water	data and simple methods		
	Hygiene (WASH)	gathering and	contamination, drought	of calculating size of		
	forum	dissemination.		RWH tanks, could be		

			and related health	shared with general public		
			impacts.	though awareness		
				campaigns, which may		
				include television shows,		
				radio broadcasts, posters		
				and flyers.		
Rooftop Rain	Demonstration	Demonstration projects	If demonstration systems	Opportunity to use	There is threat of	Yes
water	projects may be	are useful in providing	are not well managed, it	existing RWH systems in	vandalism of RWH	
harvesting	set up in	practical training for	may cause loss of	institutions such as	systems.	
	prominent places	installers and for raising	confidence in	schools and churches.		
	in the country.	awareness amongst	technology.			
		general public.				
Rooftop Rain	School curricula	Revision of curricula to	Theoretical knowledge	Opportunities are there in	Curriculum review	No, giving
water	needs to be revised	include RWH will ensure	alone is not enough,	schools which have	may take time	subsidy
harvesting	to include RWH	that it will be taught.	practical sessions and	already implemented		vouchers
	with a practical		visits to demonstration	RWH and can act as		will be a
	approach and		sites will help.	demonstration sites.		more
	hands on training					effective
	at tertiary level.					measure.
Livestock and	Awareness on the	Farmers are the users of	This technology should	This will help change	If technology is not	Yes
Poultry	technology to be	this technology and	not compete with	mind-set of farmers to	implemented	
selective	improved through	raising awareness	indigenous knowledge,	consider livestock farming	properly, there could	
breeding	training of	amongst them will help	but rather work together	as a business and use	be weaknesses in	
	farmers.	adoption of this	with local and indigenous	correct breeding	breeds.	
		technology.	knowledge.	techniques to maximise		
				benefits for adaptation.		
Livestock and	Conduct research	With demand from	Creating new markets is	Research on markets	There could be	Yes
Poultry	on markets spread,	markets for well-bred	dependent on people	spread will help increase	resistance for creation	
selective	gaps and improve	livestock and poultry,	using the markets.	breeding opportunities as	of new markets.	
breeding	value chain by	farmers will respond to		farmers can buy livestock		
	creating new	the demand.		and poultry to breed from		
				the markets.		

	markets where					
Livestock and Poultry selective breeding	needed. Promote indigenous chickens by enhancing capacity of Department of Livestock extension services. Ministry of Agriculture promotes	The indigenous chickens programme is already being implemented by Department of Livestock extension services, hence we need to build on this.	Extension officers have resource limitations to carry out their duties.	Opportunity in developing capacity of existing personnel of Department of Livestock extension services.	No threats identified	Yes
	indigenous chickens, but this needs to be up- scaled further.					
Conservation Agriculture	Create awareness amongst farmers through setting up demonstration sites and conducting site visits.	The demonstration sites will promote peer to peer education.	The success of demonstration sites depend on the farmers and is not in control of the technology promoters.	Site visits can be conducted during commemoration days, such as Labour Day.	If the demosntration sites are not successful, people will lose faith in the technology.	Yes
Conservation Agriculture	Provide 50% subsidy of cost for planter equipments to 20,000 farmers.	This will address the main barrier in adopting this technology which is that of farmers not being able to afford planters.	Careful selection of the 20,000 farmers in an equitable manner is needed. If farmers are incorrectly chosen, then they may not use the planters and the	There are opportunities to combine this measure with agroforestry technology.	Some farmers may buy the planter and resell.	Yes

Barrier Analysis and Enabling Framework Kingdom of Swaziland

			technology adoption may			
			fail.			
Micro and	Tax cuts for local	Tax cuts for local	This measure will reduce	Promoting local	Competition from	No.
Drip	manufacture of	manufacturers will be an	tax revenue.	manufacture will create	South African	Subsidising
irrigation	drip and micro	incentive for producing		employment in the country	manufacturers will be	the micro
	irrigation kits.	micro irrigation		influencing positive socio-	there, as they are	and drip kits
		equipment in the country.		economic change.	larger companies with	may be
		This will address the			greater economies of	better value
		barrier of micro and drip			scale.	for funds
		irrigation kits being too				than
		expensive, as locally				effecting tax
		manufactures items will				cuts for local
		be more cost effective				manufacturi
		than importing.				ng.
Micro and	Subsidise drip and	This will make the micro	This measure requires	There is opportunity to	There could be people	Yes
Drip	micro irrigation	and drip irrigation kits	funds to be made	improve food production	who will purchase the	
irrigation	kit for 20,000	affordable and widely	available for subsidy.	through usage of irrigation	subsidised kits for	
	farmers.	used.	Furthermore, selection of	kits, which has multiple	resale.	
	Government can		farmers should be done	benefits of improving food		
	subsidise micro		carefully and equitably to	security and nutrition, as		
	and drip irrigation		avoid conflicts.	well as helping with		
	kits (by 50%) for			climate change adaptation		
	farmers and			for the sector.		
	encourage					
	purchase of kits by					
	farmer groups.					
Micro and	Set up an	Having an Irrigation Act	Setting up an Act is a	There is opportunity to	No threat ideintified.	No. This
Drip	Irrigation Act	will give provision for	time consuming process.	make the Irrigation Act in		measure will
irrigation	which should	efficient use of water for		alignment with latest		take time,
	contain incentives	irrigation, which is the		Government priorities and		rather the
	for efficient use of	largest water usage in the		to align with climate		focus could
	irrigation water	country.		change strategy.		be on

	and fines and penalties for wastage of water.					providing subsidy whic will help up- scale the technology faster
Micro and Drip irrigation	Capacitate the National Water Authority through providing training to staff, providing	Capacity building of the National Water Authority will be benefitial in the long run as they are mandated to ensure	There are no weaknesses anticipated from capacity building measure.	There is opportunity to include latest technologies in the training.	Officers trained may leave the institution for career prospects.	Yes
	and information technology infrastructure.	efficient use of water.				
Micro and Drip irrigation	Create awareness of the benefits of drip and micro irrigation technologies.	Creating awareness will help change negative beliefs such as assosciating visible wet soil to irrigation, whereas drip irrigation technology does not wet the soil externally.	No weaknesses anticipated from creating awareness of water efficient irrigation technologies.	Creating awareness will entice more farmers to adopt this technology, thereby contributing to efficiency in water use.	No threats anticipated.	Yes
Micro and Drip irrigation	Create a pool of skilled labour through providing training at vocational schools on drip and micro irrigation installation.	Targetting youth for training will be a sustainable way to promote this technology.	The success of this measure is dependent on vocational schools being open to including this training.	There is opportunity for youth to get work as micro and drip irrigation installers.	No threat anticipated.	No. For up- scaling this technology, subsidy would be most effective.

Agroforestry	An agroforesry	The training would be	Identifying 20,000	There is opportunity to	No threats identified	Yes
	programme to be	done by Ministry of	farmers in an equitable	piggyback the training		
	rolled out for	Agriculture's Extension	manner from all four	with other trainings for		
	training 20,000	Officers, who are	regions may be a	farmers, such as		
	farmers and	mandated for this.	challenge.	Conservation Agriculture.		
	providing free					
	seedlings.					
Conservation	Establish a	This measure will	This measure required	There is opportunity to use	There is threat of	Yes
of genetic	Botanical Garden	provide multiple benefits	continuous maintenance	information from	vandalism and	
resources	and Field Gene	of being a training center	and care to be running	Department of Forestry's	collapse if	
	Bank.	and field seed bank.	successfully.	already developed	maintenance is not	
				proposal for National	done.	
				Botanical Garden		
Conservation	Provide training to	Developing capacity of	Sending officers for	There is opportunity for	Staff trained may	Yes
of genetic	staff of SEA and	SEA and SPGRC staff	training for long term	the officers trained to	leave for better career	
resources	SPGRC in in Plant	will help them effectively	may cause staff shortages	share their knowledge and	prospects.	
	Genetic Resources	carry out their duties.	in the institutions.	train other staff members.		
	Management,					
	Plant Ecology,					
	Plant Taxonomy					
	and Ethnobotany					
	through providing					
	scholarships for					
	futher studies.					
Conservation	Create awareness	Field days are powerful	The field days have to be	There is opportunity to	Farmers may boycott	Yes
of genetic	amongst farmers	way of practical	organized well and	conduct this on	such field days if they	
resources	to collect seeds	demosntrations and peer	logistics organized in	environemntal	feel it is not beneficial	
	and multiply them	to peer education.	order for it to be	commemmoration days	for them.	
	through field days		successful.	and therefore pool		
	at the Botanical			resources allocated for		
	Garden and Field			that.		
	Gene Bank.					

Invasive	Exempt all IASP	Import duty exemption	This may affect the	There will be opportunity	Some importers of	No
Alien Species	management and	will reduce cost of	country's overall Gross	to expand the IASPs	such chemicals may	This may be
Management	control chemicals	chemicals and budgets	National Income.	management programme	misuse this	difficult to
	from import duty.	for IASPs management		when budget is more.	exemption.	monitor.
		will be extended.				
Invasive	Improve	Awareness raising as a	If messages are not	There is opportunity to	No threats identified	Yes
Alien Species	awareness of	measure is helpful in	designed suitably in IEC	include awareness raising		
Management	IASPs, its impact	mobilising public support	materials, there could be	measures during		
	on the	and generating several	misunderstandings.	commemoration of		
	environment and	local initiatives to control		environmental days		
	all the sectors	IASPs.				
	affected. This can					
	be done through					
	awareness					
	campaigns					
	including road					
	shows.					
Invasive	Improve skills in	Skills improvement such	Field officers may be	There are opportunities to	Knowledge on IASPs	Yes
Alien Species	IASPs	as learning new	trained in new skills, but	collaborate and undertake	is constantly changing	
Management	management by	technologies available	if resources are	training on various related	as new invasive	
	providing training	will help in effective	unavailable for them to	aspects, such as wetlands	species get	
	to IASPs field	IASPs management.	implement techniques	restoration and IASPs	introduced.	
	officers		learnt, they may become	management. This will		
	responsible in		demotivated.	bring out synergies and		
	SEA.			optimal use of training		
				sessions.		
Invasive	Prepare a policy	Policy briefs will provide	Policy brief is short and	There is opportunities for	No threats identified	Yes
Alien Species	brief on impact of	policy makers with	therefore not able to	the policy brief to link		
Management	IASPs on sectors	userfreindly data to make	depict a lot of	impact of IASPs to all		
	in Swaziland.	evidence based decisions	information.	sectors affected and		
		and policies.		indicate how it will impact		
				economy of country		

1.0							
	Invasive	Revise the IASPs	The IASPs Management	The IASPs Management	There is opportunity to	No threats identified	No, as the
	Alien Species	Management	strategy is already in	Strategy is not a legal	update the strategy and		revision of
	Management	Strategy to make it	place but needs revision.	instrument such as an Act	remove any weaknesses or		the strategy
		more robust for		and needs revision as	confusion in the strategy.		is included in
		implementation.		identified by			the SNPAS
				stakeholders			programme

Overall strategy for overcoming barriers in each technology is given below.

Table 34 Overall strategy for overcoming barriers

Technology	Strategy
Integrated River Basin	The overall strategy for implementing this technology is to develop proposals for raising funds to implement programmes for River
Management (IRBM)	Basin Authorities, establish a "Funds Coordination Platform" where synergies in usage of funds can be realised, to build capacity
	of officers responsible for implementing relevant legislations and create awareness amongst stakeholders about IRBM and water
	resources management.
Wetland Restoration and	The overall strategy for wetlands restoration and protection will include a suite of actions including setting up a funds coordination
Protection (WRP)	mechanism for identifying syenrgies in funds usage with related programmes, developing proposals for restoration of selected
	wetlands, creating awareness of importance of wetlands creating a wetlands monitoring system.
Rooftop Rain water	Ths strategy to up-scale this technology is by subsidising RWH tanks (by 50% of its cost) and improving awareness.
harvesting	
Livestock and Poultry	To improve breeding of livestock and poultry, awareness raising, researching on gaps in the market and enhancing capacity of
selective breeding	extension staff to promote this technology.
Conservation Agriculture	Creating awareness through demonstration farms and providing subisides for planters will help up-scale this technology.
Micro and Drip irrigation	The overall strategy for up-scaling this technology is to make it more affordable to farmers and this will be done through providing
	subsidies. Furthermore, capacity building of officers responsible and creating awareness amongst farmers will help in widespread
	use of this technology.
Agroforestry	The strategy for this technology is simple, that of training 20,000 farmers and providing free seedlings.
Conservation of genetic	The strategy for this technology is multipronged. Establishing a botanical garden and field gene bank, providing training to relevant
resources	officers and creating awareness amongst farmers will help in the technology being utilised in Swaziland.

Invasive	Alien	Species	The oversall strategy for this technology includes raising funds for IASPs management, improving awareness and skills in IASPs
Manageme	ent		management as well as revising the IASPs Management Strategy and preparing a policy brief to get support from policymakers.

6. Chapter 6 Linkages between barriers and complementarities between technologies

During the analysis for BAEF report, linkages of barriers between technologies were identified. The most common barrier for all the nine technologies was inadequate funds, weak capacity and low awareness. A funds coordination mechanism was suggested as a measure for IRBM and WRP.

Technologies		Barriers			Measures	
	Inadequate	Weak	Low	Funds	Capacity	Awareness
	funding	Capacity	awareness	Coordination	building	raising
				mechanism		
Integrated River Basin						
Management (IRBM)						
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
Wetland Restoration						
and Protection (WRP)						
	✓	✓	✓	\checkmark	\checkmark	✓
Rooftop Rain water						
harvesting						
	\checkmark	\checkmark	✓		\checkmark	\checkmark
Livestock and Poultry						
selective breeding						
		\checkmark	\checkmark		\checkmark	✓
Conservation						
Agriculture						
	✓	\checkmark	\checkmark		\checkmark	✓
Micro and Drip						
irrigation						
	✓	~	✓		~	✓
Agroforestry						
		~	✓		~	✓
Conservation of						
genetic resources						
	✓	✓	✓	~	✓	✓
Invasive Alien Species						
Management						
	 ✓ 	 ✓ 	✓	✓	 ✓ 	✓

Complementarities can be established between all the nine prioritized technologies. IRBM and WRP will enhance the ecosystem health, leading to improved water quality and reduced flooding, which will be beneficial for agriculture and forestry sectors. A good agroforestry programme not only has adaptation benefits, but mitigation benefits of carbon sequestration too. Furthermore, it helps in enhancing livelihoods of farmers by providing additional incomes. Efficient use of water by humans will allow water for environmental needs which will be beneficial to conserve biodiversity and habitats. Similarly conserving genetic resources will not only provide benefits to farmers, but also help with preserving Swaziland's biodiversity. Invasive alien species management provides benefits to all three sectors, and enhances ecosystem health. When developing proposals for raising funds, integrating more than one technology into the proposal will help generate concerted effort. Funds coordination mechanism was suggested for three technologies and there is scope for combined effect. Capacity building and awareness raising was something that was suggested as measure for all technologies. Here too there is scope for collaborative efforts and greater synergies. When cross-cutting measures such as improving funds coordination, providing awareness and building capacity is implemented, there are synergies that could be derived from the sectors working together. Integrated development efforts will benefit Swaziland more than siloed sectoral approaches.

6. List of References

African Health Observatory. (2017). Comprehensive Analytical Profile: Swaziland. Online publication available at <u>http://www.aho.afro.who.int/profiles_information/index.php/Swaziland:Index/fr</u> Accessed on 11 August 2017.

All Out Africa. (2017). Khula Tree Project. Online publication available at <u>https://alloutafrica.com/khula-tree-project/</u> Accessed 16 August 2017.

Allen, J.A. (1990). Homestead tree planting in two rural Swazi communities. *Agroforestry Systems*, 11:11-22.

Borokini, T.I. and Babalola, F.D. (2012). Management of invasive plant species in Nigeria through economic exploitation: lessons from other countries. *Management of Biological Invasions*, 3(1): 45–55.

Doran, M.H., Low, A.R.C. and Kemp, R.L. (1979). Cattle as a store of wealth in Swaziland: Implications for livestock development and overgrazing in Eastern and Southern Africa. *American Journal of Agricultural Economics*, 61(1): 41–47.

Dlamini, G.M. and Lupupa, T. (1995). Swaziland: Country Report to the FAO International Technical Conference on Plant Genetic Resources. Online Publication available at http://www.fao.org/fileadmin/templates/agphome/documents/PGR/SoW1/africa/SWAZILAN.pdf Accessed 17 August 2017.

Dlamini, N.S., Rowshon, M.K., Makhanya, M. and Sithole, S. (2014). The CDAA Framework for Development of Sustainable Large-scale Smallholder Irrigation Schemes in Swaziland. *Agriculture and Agricultural Science Procedia*, 2:386 – 393.

FAO. (2005). Irrigation in Africa in figures, AQUASTAT Survey 2005.

FAO. (2011). Swaziland Agriculture Development Programme. Online publication available at <u>http://www.fao.org/3/a-bd203e.pdf</u> Accessed on 14 August 2017.

FAO. (2017). Swaziland looks to a revitalised agriculture sector. Online publication available at <u>http://www.fao.org/in-action/swaziland-looks-to-a-revitalized-agriculture-sector/en/</u> Accessed 15 August 2017.

Global Water Partnership (GWP). (2000). Integrated Water Resources Management, Global Water Partnership Technical Advisory Committee Background Papers, No. 4.

Government of Rwanda. (2012). Republic of Rwanda; Barrier Analysis and Enabling Framework for Technology Transfer and Diffusion. Online publication available at http://www.database.tech-action.org/media/k2/attachments/TechnologyNeedsAssessment-Barriers-Enabling_Rwanda_13.pdf Accessed on 16 August 2017.

Government of Swaziland. (2009). National Water Policy, National Water Authority, Mbabane.

Government of Swaziland. (2010). National Strategy for the Control & Management of Invasive Alien Plant Species, Ministry of Toursim and Environmental Affairs, Mbabane.

Government of Swaziland. (2016). Third National Communication –draft. Ministry of Tourism and Environmental Affairs.

IFAD. (2014). Lower Usuthu Sustainable Land Management Project: Supervision report. IFAD East and Southern Africa Division.

Institute of Developing Economies – Japan External Trade Organization (IDE-JETRO). (2017). Komati Basin Water Authority. Online publication available at http://www.ide.go.jp/English/Data/Africa_file/Company/swaziland04.html Accessed 10 August 2017.

Kowalkowski, T., Cukrowska, E., Mkhatshwa, B.H. and Buszewski, B. (2007). Statistical characterisation of water quality in Great Usuthu River (Swaziland), *Journal of Environmental Science and Health* Part A 42(8):1065-72.

Kotzé, I., Sibandze, P., Beukes, H., van den Berg E., Weepener, H. and Newby, T. (2010). Surveying and Mapping the Distribution and Intensity of Infestation of Selected Category 1 Invasive Alien Plant Species in Swaziland, Agricultural Research Council, Pretoria.

Manyatsi, A. and Brown, R. (2009). IWRM survey and status report: Swaziland. Global Water Partnership, southern Africa.

Manyatsi, A. and Mhazo, N. (2014). A Comprehensive Scoping and Assessment Study of Climate Smart Agriculture Policies in Swaziland. FARNPAN, Pretoria, South Africa.

Masarirambi, M.T., Manyatsi, A.M and Mhazo, N. (2010). Distribution and Utilisation of Wetlands in Swaziland. *Research Journal of Environmental and Earth Sciences*, 2(3): 146-152.

Matsebula, J.M. 1988. A history of Swaziland. Longman.

Millennium Ecosystem Assessment (MEA). (2005). Synthesis Report. Island Press.

Mwendera, E.J., Manyatsi, A.M., Magwenzi, O. and Dlamini, S.M. (2002). Water demand management programme for Southern Africa, country report for Swaziland, IUCN Southern Africa Country Office.

Nygaard, I and Trærup, U.E.H. *Overcoming Barriers to the Transfer and Diffusion of Climate Technologies*. Online guidebook available at <u>www.tech-action.org</u> Accessed in January 2017.

Singwane, S. and Kunene, S. (2010). Viability of rainwater harvesting in supplying domestic water in rural areas of Swaziland: a case of Mpaka community. *Journal of Sustainable Development in Africa*, Volume 12, No.2.

SPGRC. (2017). Swaziland National Plant Genetics Resource Center. Online publication available at http://www.spgrc.org.zm/index.php/swaziland-mainmenu-32 Accessed 17 August 2017.

Sustainable Development Solutions Network (SDSN). (2017). Indicators and a monitoring framework. Online publication available at <u>http://indicators.report/targets/2-5/</u> Accessed on 17 August 2017.

Swaziland Environment Authority (SEA). (2014). Fifth National Report to the Convention on Biological Diversity, Government of Swaziland, Mbabane.

Swaziland Environment Authority (SEA). (2017). Online publication available at <u>http://www.sea.org.sz/</u> Accessed 8 July 2017.

UNDP. (2010). Swaziland household income and expenditure survey. UNDP, Mbabane.

UNDP. (2011). Project Document: Strengthening the National Protected Areas System of Swaziland. Online publication available at https://info.undp.org/docs/pdc/Documents/SWZ/Swaziland%20Protected%20Areas%20PRODOC.pdf Accessed 12 August 2017.

UNDP. (2017). Adapting national and transboundary water resource management to manage the expected impacts of climate change. Online publication available at

http://www.sz.undp.org/content/swaziland/en/home/operations/projects/environment_and_energy/Project_00077723.html_Accessed 9 August 2017.

Van Wilgen, B.W., Cowling, R.M., Marais, C., Esler, K.J., McConnachie, M and Sharp, D. (2012). Challenges in invasive alien plant control in South Africa. Online publication available at <u>http://www.sajs.co.za/sites/default/files/publications/pdf/1445-10865-1-PB.pdf</u> Accessed 21 August 2017.

Vilane, B.R.T. and Mwendera, E. J. (2011). An inventory of rainwater harvesting technologies in Swaziland. African Journal of Agricultural Research Vol. 6(6): 1313-1321.

Wilkinson, M.J., Magagula, T.K. and Hassan, R.M. (2015). Piloting a method to evaluate the implementation of integrated water resource management in the Inkomati River Basin. *Water SA*, vol.41 n.5. <u>http://dx.doi.org/10.4314/WSA.V4115.06</u>

World Bank. (2011). Swaziland Rural Sector Review. Online publication available at http://documents.worldbank.org/curated/en/417071468120839245/pdf/702010ESW0P11900PN200June0 270020110.pdf Accessed on 15 August 2017.

WWF. (2017). Integrated River Basin Management. Online publication available at <u>http://wwf.panda.org/about_our_earth/about_freshwater/rivers/irbm/</u> Accessed 9 August 2017.

LIST OF PARTICIPANTS FOR STAKEHOLDER CONSULTATIONS

List of stakeholders involved for first BAEF workshop

BAEF workshop 1 – August 2016

	Name	Institution
1	Jabulani Tsabedze	Swaziland National Agricultural Union
2	Sandile Simelane	Wundersight Investments
3	Mzwandile Thwala	Ministry of Natural Resources and Energy, Energy Department
4	Mduduzi Dlamini	Swaziland Environment Authority
5	Titus Dlamini	Ministry of Agriculture, UNCCD
6	Bongani Sigudla	Ministry of Health, Environmental Health Department
7	Lemohang Mtshali	Matsapha Town Council
8	Mthunzi Fakudze	Ministry of Public Works and Transport, Roads Department
9	Bongani Mvubu	Ministry of agriculture, Malkerns Agricultural Research Centre
10	Bafana Simelane	Department of Meteorology
11	Vusi Matsebula	Ezulwini Municipality
12	Minky Groenewald	Department of Meteorology
13	Glory T. Mdluli	Ministry of Tourism and Environmental Affairs
14	Edward Mswane	Ministry of Natural Resources and Energy, Department of Water affairs
15	Thamsanqa Nkambule	Ministry of Tinkhundla, Administration and Development
16	Stanley Simelane	University of Swaziland
17	Hlobsile Sikhosana	Ministry of Tourism and Environmental affairs
18	Deepa Pullanikkatil	Coordinating Assembly for Non- Governmental Organisations
19	Mduduzi Mathunjwa	UNISWA
20	Bothwell Batidzirai	ERC- University of Capetown
21	Mvezi Dlamini	Peak Timbers
22	Dennis Mkhonta	Department of Meteorology - Forecasting
23	Thembinkosi Ndzimandze	Ministry of Natural Resources and Energy, Department of Energy
24	Sanelisiwe Mamba	Ministry of Tourism and Environmental Affairs
25	Mzwandile Msibi	Swaziland Energy Regulatory Authority

26	Mbhekeni Wilfred	Department of Forestry
	Nxumalo	
27	Sihle Mkhatswa	Department of Meteorology
28	Nomkhosi Khoza	Eclipse Environmental Solutions
29	Duduzile Nhlengethwa	Department of Meteorology
	Masina	
30	Sifiso Nzalo	Department of Meteorology
31	Sipho Matsebula	Swaziland Environment Authority
32	Andile Zwane	Swaziland Standards Authority
33	Mbongeni Hlophe	Swaziland Environment Authority
34	Sipho Simelane	Swaziland Water Services Corporation
35	Mandla Mdlovu	Ministry Of Agriculture
36	Khetsiwe Khumalo	Department of Meteorology

List of participants for the second BAEF workshop (March 2017) will be appended as soon as it is made available.

End of document